utils.py 6.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from copy import deepcopy
from typing import Dict, List, Tuple, Union

import dgl
import torch
import torch.nn as nn
from ogb.nodeproppred import DglNodePropPredDataset


class Callback:
    def __init__(
        self,
        patience: int,
        monitor: str,
    ) -> None:
        self._patience = patience
        self._monitor = monitor
        self._lookback = 0
        self._best_epoch = None
        self._train_times = []
        self._valid_times = []
        self._train_losses = []
        self._valid_losses = []
        self._train_accuracies = []
        self._valid_accuracies = []
        self._model_parameters = {}

    @property
    def best_epoch(self) -> int:
        return self._best_epoch + 1

    @property
    def train_times(self) -> List[float]:
        return self._train_times

    @property
    def valid_times(self) -> List[float]:
        return self._valid_times

    @property
    def train_losses(self) -> List[float]:
        return self._train_losses

    @property
    def valid_losses(self) -> List[float]:
        return self._valid_losses

    @property
    def train_accuracies(self) -> List[float]:
        return self._train_accuracies

    @property
    def valid_accuracies(self) -> List[float]:
        return self._valid_accuracies

    @property
    def best_epoch_training_time(self) -> float:
        return sum(self._train_times[:self._best_epoch])

    @property
    def best_epoch_train_loss(self) -> float:
        return self._train_losses[self._best_epoch]

    @property
    def best_epoch_valid_loss(self) -> float:
        return self._valid_losses[self._best_epoch]

    @property
    def best_epoch_train_accuracy(self) -> float:
        return self._train_accuracies[self._best_epoch]

    @property
    def best_epoch_valid_accuracy(self) -> float:
        return self._valid_accuracies[self._best_epoch]

    @property
    def best_epoch_model_parameters(
            self) -> Union[Dict[str, torch.Tensor], Dict[str, Dict[str, torch.Tensor]]]:
        return self._model_parameters

    @property
    def should_stop(self) -> bool:
        return self._lookback >= self._patience

    def create(
        self,
        epoch: int,
        train_time: float,
        valid_time: float,
        train_loss: float,
        valid_loss: float,
        train_accuracy: float,
        valid_accuracy: float,
        model: Union[nn.Module, Dict[str, nn.Module]],
    ) -> None:
        self._train_times.append(train_time)
        self._valid_times.append(valid_time)
        self._train_losses.append(train_loss)
        self._valid_losses.append(valid_loss)
        self._train_accuracies.append(train_accuracy)
        self._valid_accuracies.append(valid_accuracy)

        best_epoch = False

        if self._best_epoch is None:
            best_epoch = True
        elif self._monitor == 'loss':
            if valid_loss < self._valid_losses[self._best_epoch]:
                best_epoch = True
        elif self._monitor == 'accuracy':
            if valid_accuracy > self._valid_accuracies[self._best_epoch]:
                best_epoch = True

        if best_epoch:
            self._best_epoch = epoch

            if isinstance(model, dict):
                for name, current_model in model.items():
                    self._model_parameters[name] = deepcopy(
                        current_model.to('cpu').state_dict())
            else:
                self._model_parameters = deepcopy(model.to('cpu').state_dict())

            self._lookback = 0
        else:
            self._lookback += 1


class OGBDataset:
    def __init__(
        self,
        g: Union[dgl.DGLGraph, dgl.DGLHeteroGraph],
        num_labels: int,
        predict_category: str = None,
    ) -> None:
        self._g = g
        self._num_labels = num_labels
        self._predict_category = predict_category

    @property
    def num_labels(self) -> int:
        return self._num_labels

    @property
    def num_classes(self) -> int:
        return self._num_labels

    @property
    def predict_category(self) -> str:
        return self._predict_category

    def __getitem__(self, idx: int) -> Union[dgl.DGLGraph, dgl.DGLHeteroGraph]:
        return self._g


def load_ogbn_mag(root: str = None) -> OGBDataset:
    dataset = DglNodePropPredDataset(name='ogbn-mag', root=root)

    split_idx = dataset.get_idx_split()

    train_idx = split_idx['train']['paper']
    valid_idx = split_idx['valid']['paper']
    test_idx = split_idx['test']['paper']

    hg_original, labels = dataset[0]

    labels = labels['paper'].squeeze()
    num_labels = dataset.num_classes

    subgraphs = {}

    for etype in hg_original.canonical_etypes:
        src, dst = hg_original.all_edges(etype=etype)

        subgraphs[etype] = (src, dst)
        subgraphs[(etype[2], f'rev-{etype[1]}', etype[0])] = (dst, src)

    hg = dgl.heterograph(subgraphs)

    hg.nodes['paper'].data['feat'] = hg_original.nodes['paper'].data['feat']
    hg.nodes['paper'].data['labels'] = labels

    train_mask = torch.zeros((hg.num_nodes('paper'),), dtype=torch.bool)
    train_mask[train_idx] = True
    valid_mask = torch.zeros((hg.num_nodes('paper'),), dtype=torch.bool)
    valid_mask[valid_idx] = True
    test_mask = torch.zeros((hg.num_nodes('paper'),), dtype=torch.bool)
    test_mask[test_idx] = True

    hg.nodes['paper'].data['train_mask'] = train_mask
    hg.nodes['paper'].data['valid_mask'] = valid_mask
    hg.nodes['paper'].data['test_mask'] = test_mask

    ogb_dataset = OGBDataset(hg, num_labels, 'paper')

    return ogb_dataset


def process_dataset(
    name: str,
    root: str = None,
) -> Tuple[OGBDataset, dgl.DGLHeteroGraph, torch.Tensor]:
    if root is None:
        root = 'datasets'

    if name == 'ogbn-mag':
        dataset = load_ogbn_mag(root=root)

    g = dataset[0]

    predict_category = dataset.predict_category

    train_idx = torch.nonzero(
        g.nodes[predict_category].data['train_mask'], as_tuple=True)[0]
    valid_idx = torch.nonzero(
        g.nodes[predict_category].data['valid_mask'], as_tuple=True)[0]
    test_idx = torch.nonzero(
        g.nodes[predict_category].data['test_mask'], as_tuple=True)[0]

    return dataset, g, train_idx, valid_idx, test_idx