traversal.h 10 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
/*!
 *  Copyright (c) 2020 by Contributors
 * \file array/cpu/traversal.h
 * \brief Graph traversal routines.
 *
 * Traversal routines generate frontiers. Frontiers can be node frontiers or edge
 * frontiers depending on the traversal function. Each frontier is a
 * list of nodes/edges (specified by their ids). An optional tag can be specified
 * for each node/edge (represented by an int value).
 */
#ifndef DGL_ARRAY_CPU_TRAVERSAL_H_
#define DGL_ARRAY_CPU_TRAVERSAL_H_

#include <dgl/graph_interface.h>
#include <stack>
#include <tuple>
#include <vector>

namespace dgl {
namespace aten {
namespace impl {

/*!
 * \brief Traverse the graph in a breadth-first-search (BFS) order.
 *
 * The queue object must suffice following interface:
 *   Members:
 *   void push(IdType);  // push one node
 *   IdType top();       // get the first node
 *   void pop();           // pop one node
 *   bool empty();         // return true if the queue is empty
 *   size_t size();        // return the size of the queue
 * For example, std::queue<IdType> is a valid queue type.
 *
 * The visit function must be compatible with following interface:
 *   void (*visit)(IdType );
 *
 * The frontier function must be compatible with following interface:
 *   void (*make_frontier)(void);
 *
 * \param graph The graph.
 * \param sources Source nodes.
 * \param reversed If true, BFS follows the in-edge direction
 * \param queue The queue used to do bfs.
 * \param visit The function to call when a node is visited.
 * \param make_frontier The function to indicate that a new froniter can be made;
 */
template<typename IdType, typename Queue, typename VisitFn, typename FrontierFn>
void BFSTraverseNodes(const CSRMatrix& csr,
              IdArray source,
              Queue* queue,
              VisitFn visit,
              FrontierFn make_frontier) {
  const int64_t len = source->shape[0];
  const IdType *src_data = static_cast<IdType*>(source->data);

  const IdType *indptr_data = static_cast<IdType *>(csr.indptr->data);
  const IdType *indices_data = static_cast<IdType *>(csr.indices->data);
  const int64_t num_nodes = csr.num_rows;
  std::vector<bool> visited(num_nodes);
  for (int64_t i = 0; i < len; ++i) {
    const IdType u = src_data[i];
    visited[u] = true;
    visit(u);
    queue->push(u);
  }
  make_frontier();

  while (!queue->empty()) {
    const size_t size = queue->size();
    for (size_t i = 0; i < size; ++i) {
      const IdType u = queue->top();
      queue->pop();
      for (auto idx = indptr_data[u]; idx < indptr_data[u+1]; ++idx) {
        auto v = indices_data[idx];
        if (!visited[v]) {
          visited[v] = true;
          visit(v);
          queue->push(v);
        }
      }
    }
    make_frontier();
  }
}

/*!
 * \brief Traverse the graph in a breadth-first-search (BFS) order, returning
 *        the edges of the BFS tree.
 *
 * The queue object must suffice following interface:
 *   Members:
 *   void push(IdType);  // push one node
 *   IdType top();       // get the first node
 *   void pop();           // pop one node
 *   bool empty();         // return true if the queue is empty
 *   size_t size();        // return the size of the queue
 * For example, std::queue<IdType> is a valid queue type.
 *
 * The visit function must be compatible with following interface:
 *   void (*visit)(IdType );
 *
 * The frontier function must be compatible with following interface:
 *   void (*make_frontier)(void);
 *
 * \param graph The graph.
 * \param sources Source nodes.
 * \param reversed If true, BFS follows the in-edge direction
 * \param queue The queue used to do bfs.
 * \param visit The function to call when a node is visited.
 *        The argument would be edge ID.
 * \param make_frontier The function to indicate that a new frontier can be made;
 */
template<typename IdType, typename Queue, typename VisitFn, typename FrontierFn>
void BFSTraverseEdges(const CSRMatrix& csr,
              IdArray source,
              Queue* queue,
              VisitFn visit,
              FrontierFn make_frontier) {
  const int64_t len = source->shape[0];
  const IdType* src_data = static_cast<IdType*>(source->data);

  const IdType *indptr_data = static_cast<IdType *>(csr.indptr->data);
  const IdType *indices_data = static_cast<IdType *>(csr.indices->data);
  const IdType *eid_data = static_cast<IdType *>(csr.data->data);

  const int64_t num_nodes = csr.num_rows;
  std::vector<bool> visited(num_nodes);
  for (int64_t i = 0; i < len; ++i) {
    const IdType u = src_data[i];
    visited[u] = true;
    queue->push(u);
  }
  make_frontier();

  while (!queue->empty()) {
    const size_t size = queue->size();
    for (size_t i = 0; i < size; ++i) {
      const IdType u = queue->top();
      queue->pop();
      for (auto idx = indptr_data[u]; idx < indptr_data[u+1]; ++idx) {
        auto e = eid_data ? eid_data[idx] : idx;
        const IdType v = indices_data[idx];
        if (!visited[v]) {
          visited[v] = true;
          visit(e);
          queue->push(v);
        }
      }
    }
    make_frontier();
  }
}

/*!
 * \brief Traverse the graph in topological order.
 *
 * The queue object must suffice following interface:
 *   Members:
 *   void push(IdType);  // push one node
 *   IdType top();       // get the first node
 *   void pop();           // pop one node
 *   bool empty();         // return true if the queue is empty
 *   size_t size();        // return the size of the queue
 * For example, std::queue<IdType> is a valid queue type.
 *
 * The visit function must be compatible with following interface:
 *   void (*visit)(IdType );
 *
 * The frontier function must be compatible with following interface:
 *   void (*make_frontier)(void);
 *
 * \param graph The graph.
 * \param reversed If true, follows the in-edge direction
 * \param queue The queue used to do bfs.
 * \param visit The function to call when a node is visited.
 * \param make_frontier The function to indicate that a new froniter can be made;
 */
template<typename IdType, typename Queue, typename VisitFn, typename FrontierFn>
void TopologicalNodes(const CSRMatrix& csr,
                      Queue* queue,
                      VisitFn visit,
                      FrontierFn make_frontier) {
  int64_t num_visited_nodes = 0;
  const IdType *indptr_data = static_cast<IdType *>(csr.indptr->data);
  const IdType *indices_data = static_cast<IdType *>(csr.indices->data);

  const int64_t num_nodes = csr.num_rows;
  const int64_t num_edges = csr.indices->shape[0];
  std::vector<int64_t> degrees(num_nodes, 0);
  for (int64_t eid = 0; eid < num_edges; ++eid) {
    degrees[indices_data[eid]]++;
  }

  for (int64_t vid = 0; vid < num_nodes; ++vid) {
    if (degrees[vid] == 0) {
      visit(vid);
      queue->push(static_cast<IdType>(vid));
      ++num_visited_nodes;
    }
  }
  make_frontier();

  while (!queue->empty()) {
    const size_t size = queue->size();
    for (size_t i = 0; i < size; ++i) {
      const IdType u = queue->top();
      queue->pop();
      for (auto idx = indptr_data[u]; idx < indptr_data[u+1]; ++idx) {
        const IdType v = indices_data[idx];
        if (--(degrees[v]) == 0) {
          visit(v);
          queue->push(v);
          ++num_visited_nodes;
        }
      }
    }
    make_frontier();
  }

  if (num_visited_nodes != num_nodes) {
    LOG(FATAL) << "Error in topological traversal: loop detected in the given graph.";
  }
}

/*!\brief Tags for ``DFSEdges``. */
enum DFSEdgeTag {
  kForward = 0,
  kReverse,
  kNonTree,
};
/*!
 * \brief Traverse the graph in a depth-first-search (DFS) order.
 *
 * The traversal visit edges in its DFS order. Edges have three tags:
 * FORWARD(0), REVERSE(1), NONTREE(2)
 *
 * A FORWARD edge is one in which `u` has been visisted but `v` has not.
 * A REVERSE edge is one in which both `u` and `v` have been visisted and the edge
 * is in the DFS tree.
 * A NONTREE edge is one in which both `u` and `v` have been visisted but the edge
 * is NOT in the DFS tree.
 *
 * \param source Source node.
 * \param reversed If true, DFS follows the in-edge direction
 * \param has_reverse_edge If true, REVERSE edges are included
 * \param has_nontree_edge If true, NONTREE edges are included
 * \param visit The function to call when an edge is visited; the edge id and its
 *              tag will be given as the arguments.
 */
template<typename IdType, typename VisitFn>
void DFSLabeledEdges(const CSRMatrix& csr,
                     IdType source,
                     bool has_reverse_edge,
                     bool has_nontree_edge,
                     VisitFn visit) {
  const int64_t num_nodes = csr.num_rows;
  CHECK_GE(num_nodes, source) << "source " << source <<
    " is out of range [0," << num_nodes << "]";
  const IdType *indptr_data = static_cast<IdType *>(csr.indptr->data);
  const IdType *indices_data = static_cast<IdType *>(csr.indices->data);
  const IdType *eid_data = static_cast<IdType *>(csr.data->data);

  if (indptr_data[source+1]-indptr_data[source] == 0) {
    // no out-going edges from the source node
    return;
  }

  typedef std::tuple<IdType, size_t, bool> StackEntry;
  std::stack<StackEntry> stack;
  std::vector<bool> visited(num_nodes);
  visited[source] = true;
  stack.push(std::make_tuple(source, 0, false));
  IdType u = 0;
  int64_t i = 0;
  bool on_tree = false;

  while (!stack.empty()) {
    std::tie(u, i, on_tree) = stack.top();
    const IdType v = indices_data[indptr_data[u] + i];
    const IdType uv = eid_data ? eid_data[indptr_data[u] + i] : indptr_data[u] + i;
    if (visited[v]) {
      if (!on_tree && has_nontree_edge) {
        visit(uv, kNonTree);
      } else if (on_tree && has_reverse_edge) {
        visit(uv, kReverse);
      }
      stack.pop();
      // find next one.
      if (indptr_data[u] + i < indptr_data[u + 1] - 1) {
        stack.push(std::make_tuple(u, i+1, false));
      }
    } else {
      visited[v] = true;
      std::get<2>(stack.top()) = true;
      visit(uv, kForward);
      // expand
      if (indptr_data[v] < indptr_data[v + 1]) {
        stack.push(std::make_tuple(v, 0, false));
      }
    }
  }
}

}  // namespace impl
}  // namespace aten
}  // namespace dgl

#endif  // DGL_ARRAY_CPU_TRAVERSAL_H_