spmm_blocking_libxsmm.h 22.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
/*!
 *  Copyright (c) 2021 Intel Corporation
 * \file array/cpu/spmm.h
 * \brief SPMM CPU kernel function header.
 * \author Sanchit Misra <sanchit.misra@intel.com>,
 *         Ramanarayan Mohanty <ramanarayan.mohanty@intel.com>,
 *         Vasimuddin Md <vasimuddin.md@intel.com>,
 *         Sasikanth Avancha <sasikanth.avancha@intel.com>
 */
#ifndef DGL_ARRAY_CPU_SPMM_BLOCKING_LIBXSMM_H_
#define DGL_ARRAY_CPU_SPMM_BLOCKING_LIBXSMM_H_

#include <dgl/array.h>
#include <dgl/bcast.h>
#include <dmlc/logging.h>
#include <algorithm>

#if !defined(_WIN32)
#ifdef USE_AVX
#ifdef USE_LIBXSMM
#include <unistd.h>
#include <libxsmm.h>
#ifdef DEBUG
#include <x86intrin.h>
#endif  // DEBUG
#include <dmlc/omp.h>

#define NUM_BLOCKS_PER_THREAD 20
#define BLOCKING_HEURISTIC_PARAM 500

namespace dgl {
namespace aten {
namespace cpu {

template <typename IdType, typename DType>
struct CSRMatrixInternal {
  IdType num_rows;
  IdType num_cols;
  IdType *indptr;
  IdType *indices;
  DType *data;
};

int32_t GetLLCSize() {
  int32_t cache_size = sysconf(_SC_LEVEL3_CACHE_SIZE);
  if (cache_size < 0) cache_size = DGL_CPU_LLC_SIZE;
  return cache_size;
}

/*!
 * \brief Tile the CSR matrix to roughly make sure that the column tiles and
 *        corresponding neighbor features fit into LLC and the row tiles
 *        are assigned to OMP threads.
 * \param csr The Csr matrix.
 * \param block_csr_array The array containing csr matrices of all blocks.
 * \param num_M_blocks Number of blocks to create along the rows of adjacency matrix.
 * \param num_K_blocks Number of blocks to create along the columns of adjacency matrix.
 * \param M_block_size block size along the rows of adjacency matrix.
 * \param K_block_size block size along the columns of adjacency matrix.
 * \param use_lhs Whether to use lhs.
 * \param use_rhs Whether to use rhs.
 */
template <typename IdType>
inline void SpMMCreateBlocks(
    const CSRMatrix& csr,
    CSRMatrixInternal<IdType, IdType> *block_csr_array,
    IdType num_M_blocks,
    IdType num_K_blocks,
    IdType M_block_size,
    IdType K_block_size,
    bool use_lhs, bool use_rhs) {

  const IdType M = csr.num_rows;
  const IdType K = csr.num_cols;
  IdType* indptr = csr.indptr.Ptr<IdType>();
  IdType* indices = csr.indices.Ptr<IdType>();
  IdType* edges = csr.data.Ptr<IdType>();
  CHECK_NOTNULL(indptr);
  if (use_lhs)
    CHECK_NOTNULL(indices);
  if (use_rhs)
    CHECK_NOTNULL(edges);

  if (num_K_blocks > 1) {
    IdType *indptr_block_buf = reinterpret_cast<IdType *>(aligned_alloc(64,
                                                             (M_block_size + 1) * num_M_blocks *
                                                             num_K_blocks * sizeof(IdType)));
    IdType *indices_block_buf = reinterpret_cast<IdType *>(aligned_alloc(64,
                                                              indptr[M] * sizeof(IdType)));
    IdType *edges_block_buf = reinterpret_cast<IdType *>(aligned_alloc(64,
                                                            indptr[M] * sizeof(IdType)));

#pragma omp parallel
    {
      IdType *my_cur_col_id = reinterpret_cast<IdType *>(aligned_alloc(64, 2 * M_block_size *
                                                                          sizeof(IdType)));

#pragma omp for
      for (IdType m = 0; m < num_M_blocks; m++) {
        const IdType M_start = m * M_block_size;
        const IdType M_end = std::min((m + 1) * M_block_size, M);
        const IdType nnz = indptr[M_end] - indptr[M_start];

        IdType cur_indices_id = 0;
        IdType *my_indices_block_buf, *my_edges_block_buf;
        if (use_lhs)
          my_indices_block_buf = indices_block_buf + indptr[M_start];
        if (use_rhs)
          my_edges_block_buf = edges_block_buf + indptr[M_start];

        for (IdType i = M_start; i < M_end; i++) {
          my_cur_col_id[(i - M_start) * 2] = indptr[i];
          my_cur_col_id[(i - M_start) * 2 + 1] = indptr[i + 1];
        }
        for (IdType k = 0; k < num_K_blocks; k++) {
          const IdType K_start = k * K_block_size;
          const IdType K_end = std::min((k + 1) * K_block_size, K);
          CSRMatrixInternal<IdType, IdType> cur_csr;
          cur_csr.num_rows = M_end - M_start;
          cur_csr.num_cols = K_end - K_start;
          // Create csr_ij
          IdType *cur_csr_indptr = indptr_block_buf + (m * num_K_blocks + k) * (M_block_size + 1);
          IdType *cur_csr_indices = nullptr, *cur_csr_edges = nullptr;
          if (use_lhs)
            cur_csr_indices = my_indices_block_buf + cur_indices_id;
          if (use_rhs)
            cur_csr_edges = my_edges_block_buf + cur_indices_id;
          IdType cur_nnz = 0;
          for (IdType i = M_start; i < M_end; i++) {
            const IdType row_start = my_cur_col_id[(i - M_start) * 2];
            const IdType row_end   = my_cur_col_id[(i - M_start) * 2 + 1];
            cur_csr_indptr[i - M_start] = cur_nnz;
            IdType eid;
            for (eid = row_start; eid < row_end; eid++) {
              const IdType src = indices[eid];
              const IdType edge = edges[eid];
              if (src >= K_end) {
                break;
              }
              CHECK_LT(cur_indices_id + cur_nnz, nnz);
              if (use_lhs)
                cur_csr_indices[cur_nnz] = src;
              if (use_rhs)
                cur_csr_edges[cur_nnz] = edge;
              cur_nnz++;
            }
            my_cur_col_id[(i - M_start) * 2] = eid;
          }
          cur_csr_indptr[cur_csr.num_rows] = cur_nnz;
          cur_indices_id += cur_nnz;
          cur_csr.indptr = cur_csr_indptr;
          if (use_lhs)
            cur_csr.indices = cur_csr_indices;
          if (use_rhs)
            cur_csr.data = cur_csr_edges;
          block_csr_array[m * num_K_blocks + k] = cur_csr;
        }
        CHECK_EQ(nnz, cur_indices_id);
      }
      free(my_cur_col_id);
    }
  } else {
#pragma omp for
    for (IdType m = 0; m < num_M_blocks; m++) {
      const IdType M_start = m * M_block_size;
      const IdType M_end = std::min((m + 1) * M_block_size, M);

      CSRMatrixInternal<IdType, IdType> cur_csr;
      cur_csr.num_rows = M_end - M_start;
      cur_csr.num_cols = K;
      cur_csr.indptr = indptr + M_start;
      cur_csr.indices = indices;
      cur_csr.data = edges;

      block_csr_array[m] = cur_csr;
    }
  }
}

/*!
 * \brief Create libxsmm kernel.
 * \param has_idx For the edge features, are there indices available.
 * \param N Feature size.
 * \param redop_flag Flag specifying the reduction operation.
 * \param is_cmp Is the reduction operation a compare operation.
 * \note libxsmm_dispatch_meltw_opreduce_vecs_idx creates a JIT'ed kernel.
 *       Given a node u, the kernel performs an elementwise "Op" on the
 *       features of the neighbors and/or the edges incident on u.
 *       Subsequently, it performs an elementwise "Redop" on all such
 *       features created and stores into the feature of node u.
 *       It uses a SIMD and a cache efficient design and also provides
 *       support to enable software prefetching if needed. For IdType,
 *       it supports INT32 and INT64. For DType, it supports BF16 and FP32.
 *       It supports all the "Ops" and "Redops" supported by DGL. Once a
 *       kernel is generated by libxsmm_dispatch_meltw_opreduce_vecs_idx,
 *       it is cached for the entire duration of the execution of a program
 *       so that subsequently if the kernel is needed again, it just returns
 *       the cached copy.
 */
template <typename IdType, typename DType, typename Op>
inline libxsmm_meltwfunction_opreduce_vecs_idx SpMMCreateLibxsmmKernel(
    bool has_idx,
    IdType N,
    libxsmm_meltw_opreduce_vecs_flags redop_flag,
    bool is_cmp) {
  int _ld = N;
  libxsmm_meltw_opreduce_vecs_flags opredop_flags;
  // First, set the Op in the opredop_flags
  if (std::is_same<Op, op::Add<DType>>::value) {
    opredop_flags = LIBXSMM_MELTW_FLAG_OPREDUCE_VECS_OP_ADD;
  } else if (std::is_same<Op, op::Sub<DType>>::value) {
    opredop_flags = LIBXSMM_MELTW_FLAG_OPREDUCE_VECS_OP_SUB;
  } else if (std::is_same<Op, op::Mul<DType>>::value) {
    opredop_flags = LIBXSMM_MELTW_FLAG_OPREDUCE_VECS_OP_MUL;
  } else if (std::is_same<Op, op::Div<DType>>::value) {
    opredop_flags = LIBXSMM_MELTW_FLAG_OPREDUCE_VECS_OP_DIV;
  } else if (std::is_same<Op, op::CopyLhs<DType>>::value) {
    opredop_flags = LIBXSMM_MELTW_FLAG_OPREDUCE_VECS_OP_COPY;
  } else if (std::is_same<Op, op::CopyRhs<DType>>::value) {
    opredop_flags = LIBXSMM_MELTW_FLAG_OPREDUCE_VECS_OP_COPY;
  }
  // Second, set which of lhs or rhs is considered first and second operand.
  // This is needed since libxsmm assumes that the copy operation always copies the first operand.
  // So, if we need to copy rhs, we need to set that as the first operand.
  // For rhs, we also set whether to use implicit indices or provided indices.
  if (std::is_same<Op, op::CopyLhs<DType>>::value) {
    opredop_flags = (libxsmm_meltw_opreduce_vecs_flags)(opredop_flags |
                     LIBXSMM_MELTW_FLAG_OPREDUCE_VECS_OPORDER_VECIDX_VECIN);
  } else if (std::is_same<Op, op::CopyRhs<DType>>::value) {
    opredop_flags = (libxsmm_meltw_opreduce_vecs_flags)(opredop_flags |
                     LIBXSMM_MELTW_FLAG_OPREDUCE_VECS_OPORDER_VECIN_VECIDX);
    if (!has_idx) {
      opredop_flags = (libxsmm_meltw_opreduce_vecs_flags)(opredop_flags |
                       LIBXSMM_MELTW_FLAG_OPREDUCE_VECS_IMPLICIT_INDEXED_VECIDX);
    }
  } else {
    opredop_flags = (libxsmm_meltw_opreduce_vecs_flags)(opredop_flags |
                     LIBXSMM_MELTW_FLAG_OPREDUCE_VECS_OPORDER_VECIDX_VECIN);
    if (has_idx) {
      opredop_flags = (libxsmm_meltw_opreduce_vecs_flags)(opredop_flags |
                       LIBXSMM_MELTW_FLAG_OPREDUCE_VECS_INDEXED_VEC);
    } else {
      opredop_flags = (libxsmm_meltw_opreduce_vecs_flags)(opredop_flags |
                       LIBXSMM_MELTW_FLAG_OPREDUCE_VECS_IMPLICIT_INDEXED_VEC);
    }
  }
  // Third, we set the Redop in the opredop_flags
  opredop_flags = (libxsmm_meltw_opreduce_vecs_flags)(opredop_flags | redop_flag);
  // Fourth, in case of Cmp Redop, set whether to record argmax/argmin for lhs/rhs
  if (is_cmp) {
    if (Op::use_lhs) {
      opredop_flags = (libxsmm_meltw_opreduce_vecs_flags)(opredop_flags |
                       LIBXSMM_MELTW_FLAG_OPREDUCE_VECS_RECORD_ARGOP_OFF_VEC_0);
    }
    if (Op::use_rhs) {
      opredop_flags = (libxsmm_meltw_opreduce_vecs_flags)(opredop_flags |
                       LIBXSMM_MELTW_FLAG_OPREDUCE_VECS_RECORD_ARGOP_OFF_VEC_1);
    }
  }
  libxsmm_meltwfunction_opreduce_vecs_idx kernel = nullptr;
  if (std::is_same<DType, float>::value) {
    kernel = libxsmm_dispatch_meltw_opreduce_vecs_idx(
               N, &_ld, &_ld, LIBXSMM_DATATYPE_F32, LIBXSMM_DATATYPE_F32,
               (sizeof(IdType) == 8) ? LIBXSMM_DATATYPE_I64 : LIBXSMM_DATATYPE_I32, opredop_flags);
  }
  if (kernel == nullptr) {
267
268
    LOG(FATAL) << "Failed to generate libxsmm kernel for the SpMM operation."
                  "To disable libxsmm, use dgl.use_libxsmm(false).";
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
  }
  return kernel;
}

/*!
 * \brief Use libxsmm to perform SpMM-Sum on all blocks.
 * \param block_csr_array The array containing csr matrices of all blocks.
 * \param B The feature on source nodes.
 * \param E The feature on edges.
 * \param C The result feature on destination nodes.
 * \param has_idx For the edge features, are there indices available.
 * \param N Feature size.
 * \param num_M_blocks Number of blocks to create along the rows of adjacency matrix.
 * \param num_K_blocks Number of blocks to create along the columns of adjacency matrix.
 * \param M_block_size block size along the rows of adjacency matrix.
 * \param kernel The libxsmm kernel.
 */
template <typename IdType, typename DType>
inline void SpMMBlockwiseOpSum(
    CSRMatrixInternal<IdType, IdType> *block_csr_array,
    const DType *B, const DType *E, DType *C, bool has_idx, IdType N,
    IdType num_M_blocks, IdType num_K_blocks, IdType M_block_size,
    libxsmm_meltwfunction_opreduce_vecs_idx kernel) {

  DType (*in_matrix1)[N] = (DType (*)[N])B;
  DType (*in_matrix2)[N] = (DType (*)[N])E;
  DType (*output)[N] = (DType (*)[N])C;
#pragma omp parallel
  {
    for (IdType k = 0; k < num_K_blocks; k++) {
#pragma omp for schedule(dynamic)
      for (IdType m = 0; m < num_M_blocks; m++) {
        CSRMatrixInternal<IdType, IdType> cur_csr = block_csr_array[m * num_K_blocks + k];

        const IdType M_start = m * M_block_size;
        for (IdType i = 0; i < cur_csr.num_rows; i++) {
          const IdType row_start = cur_csr.indptr[i];
          const IdType row_end   = cur_csr.indptr[i + 1];
          const IdType dst = i + M_start;

          libxsmm_meltw_opreduce_vecs_idx_param params;
          params.n = row_end - row_start;
          params.indices = &cur_csr.indices[row_start];
          params.in_matrix = in_matrix1;
          params.out_vec = &output[dst][0];
          params.scale_vals = nullptr;
          if (has_idx) {
            params.in_matrix2 = in_matrix2;
            params.indices2 = &cur_csr.data[row_start];
          } else {
            params.in_matrix2 = &in_matrix2[row_start];
          }
          kernel(&params);
        }
      }
    }
  }
}

/*!
 * \brief Use libxsmm to perform SpMM-Max/Min on all blocks.
 * \param block_csr_array The array containing csr matrices of all blocks.
 * \param B The feature on source nodes.
 * \param E The feature on edges.
 * \param C The result feature on destination nodes.
 * \param argB Arg-Min/Max on source nodes.
 * \param argE Arg-Min/Max on edges.
 * \param has_idx For the edge features, are there indices available.
 * \param N Feature size.
 * \param num_M_blocks Number of blocks to create along the rows of adjacency matrix.
 * \param num_K_blocks Number of blocks to create along the columns of adjacency matrix.
 * \param M_block_size block size along the rows of adjacency matrix.
 * \param kernel The libxsmm kernel.
 */
template <typename IdType, typename DType, typename Op, typename Cmp>
inline void SpMMBlockwiseOpCmp(
    CSRMatrixInternal<IdType, IdType> *block_csr_array,
    const DType *B, const DType *E, DType *C, IdType *argB, IdType *argE,
    bool has_idx, IdType N,
    IdType num_M_blocks, IdType num_K_blocks, IdType M_block_size,
    libxsmm_meltwfunction_opreduce_vecs_idx kernel) {

  DType (*in_matrix1)[N] = (DType (*)[N])B;
  DType (*in_matrix2)[N] = (DType (*)[N])E;
  DType (*output)[N] = (DType (*)[N])C;
  IdType (*out_matrix1)[N] = (IdType (*)[N])argB;
  IdType (*out_matrix2)[N] = (IdType (*)[N])argE;

#pragma omp parallel
  {
    for (IdType k = 0; k < num_K_blocks; k++) {
#pragma omp for schedule(dynamic)
      for (IdType m = 0; m < num_M_blocks; m++) {
        CSRMatrixInternal<IdType, IdType> cur_csr = block_csr_array[m * num_K_blocks + k];

        const IdType M_start = m * M_block_size;
        for (IdType i = 0; i < cur_csr.num_rows; i++) {
          const IdType row_start = cur_csr.indptr[i];
          const IdType row_end   = cur_csr.indptr[i + 1];
          const IdType dst = i + M_start;

          libxsmm_meltw_opreduce_vecs_idx_param params;
          params.n = row_end - row_start;
          params.indices = &cur_csr.indices[row_start];
          params.in_matrix = in_matrix1;
          params.out_vec = &output[dst][0];
          params.argop_off_vec_0 = &out_matrix1[dst][0];
          params.argop_off_vec_1 = &out_matrix2[dst][0];
          params.scale_vals = nullptr;
          if (has_idx) {
            params.in_matrix2 = in_matrix2;
            params.indices2 = &cur_csr.data[row_start];
          } else {
            params.in_matrix2 = &in_matrix2[row_start];
          }
          kernel(&params);
        }
      }
    }
  }
}

/*!
 * \brief Free the tiled CSR matrix data.
 * \param block_csr_array The array containing csr matrices of all blocks.
 * \param num_M_blocks Number of blocks to create along the rows of adjacency matrix.
 * \param num_K_blocks Number of blocks to create along the columns of adjacency matrix.
 * \param use_lhs Whether to use lhs.
 * \param use_rhs Whether to use rhs.
 */
template <typename IdType>
inline void SpMMFreeBlocks(
    CSRMatrixInternal<IdType, IdType> *block_csr_array,
    IdType num_M_blocks, IdType num_K_blocks,
    bool use_lhs, bool use_rhs) {

  if (num_K_blocks > 1) {
    free(block_csr_array[0].indptr);
    if (use_lhs)
      free(block_csr_array[0].indices);
    if (use_rhs)
      free(block_csr_array[0].data);
  }
  free(block_csr_array);
}

/*!
 * \brief Optimized CPU kernel of SpMM-Sum/Max/Min on Csr format.
 * \param bcast Broadcast information.
 * \param csr The Csr matrix.
 * \param ufeat The feature on source nodes.
 * \param efeat The feature on edges.
 * \param out The result feature on destination nodes.
 * \param argu Arg-Min/Max on source nodes.
 * \param arge Arg-Min/Max on edges.
 * \note it uses libxsmm, blocking and dynamic thread scheduling.
 */
template <typename IdType, typename DType, typename Op, typename Redop>
void SpMMRedopCsrOpt(
    const BcastOff& bcast,
    const CSRMatrix& csr,
    NDArray ufeat, NDArray efeat,
    NDArray out,
    NDArray argu, NDArray arge) {

  int32_t llc_size = GetLLCSize();

#ifdef DEBUG
  uint64_t startTick, endTick;
  startTick = __rdtsc();
#endif  // DEBUG

  const bool has_idx = !IsNullArray(csr.data);

  DType* C = out.Ptr<DType>();
  const DType* B = ufeat.Ptr<DType>();
  const DType* E = efeat.Ptr<DType>();
  IdType *argB, *argE;
  if (std::is_same<Redop, op::Max<DType>>::value || std::is_same<Redop, op::Min<DType>>::value) {
    argB = argu.Ptr<IdType>();
    argE = arge.Ptr<IdType>();
  }

  const int nthreads = omp_get_max_threads();
  const IdType M = csr.num_rows;
  const IdType N = bcast.out_len;
  const IdType K = csr.num_cols;
  const IdType* indptr = csr.indptr.Ptr<IdType>();
  CHECK_NOTNULL(indptr);
458
  const IdType total_nnz = indptr[M];
459
460
  if (M <= 0 || K <= 0 || N <= 0 || total_nnz <= 0) return;

sanchit-misra's avatar
sanchit-misra committed
461
462
  const double avg_degree = total_nnz * 1.0 / M;
  const double nnz_prob = avg_degree / K;
463

sanchit-misra's avatar
sanchit-misra committed
464
465
  IdType K_block_size = std::min((int64_t)K, (int64_t)(llc_size / (N * sizeof(DType) *
                                                       nnz_prob * BLOCKING_HEURISTIC_PARAM)));
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
  IdType M_block_size = M / (nthreads * NUM_BLOCKS_PER_THREAD);
  if (M_block_size == 0) M_block_size = 1;
  if (K_block_size == 0) K_block_size = 1;

  IdType num_M_blocks = (M + M_block_size - 1) / M_block_size;
  IdType num_K_blocks = (K + K_block_size - 1) / K_block_size;

  CSRMatrixInternal<IdType, IdType> *block_csr_array =
    (CSRMatrixInternal<IdType, IdType> *)aligned_alloc(64,
      sizeof(CSRMatrixInternal<IdType, IdType>) * num_M_blocks * num_K_blocks);

#ifdef DEBUG
  endTick = __rdtsc();
  if (std::is_same<Redop, op::Max<DType>>::value) {
    LOG(INFO) << "Redop = Max";
  } else if (std::is_same<Redop, op::Min<DType>>::value) {
    LOG(INFO) << "Redop = Min";
  } else if (std::is_same<Redop, op::Add<DType>>::value) {
    LOG(INFO) << "Redop = Add";
  }
  LOG(INFO) << "nthreads = " << nthreads << ", llc_size = " << llc_size;
  LOG(INFO) << "M = " << M << ", K = " << K << ", N = " << N;
  LOG(INFO) << "use_lhs = " << Op::use_lhs << ", use_rhs = " << Op::use_rhs;
  LOG(INFO) << "total_nnz = " << total_nnz << ", avg_degree = " << avg_degree;
  LOG(INFO) << "has_idx = " << has_idx;
  LOG(INFO) << "nnz_prob = " << nnz_prob;
  LOG(INFO) << "K_block_size = " << K_block_size << ", M_block_size = " << M_block_size;
  LOG(INFO) << "num_K_blocks = " << num_K_blocks << ", num_M_blocks = " << num_M_blocks;
  LOG(INFO) << "stage0 ticks = " << (endTick - startTick);
  startTick = __rdtsc();
#endif  // DEBUG

  SpMMCreateBlocks(csr, block_csr_array, num_M_blocks, num_K_blocks, M_block_size, K_block_size,
                   Op::use_lhs, Op::use_rhs);

#ifdef DEBUG
  endTick = __rdtsc();
  LOG(INFO) << "stage1 ticks = " << (endTick - startTick);
  startTick = __rdtsc();
#endif  // DEBUG

  libxsmm_meltwfunction_opreduce_vecs_idx kernel = nullptr;
  if (std::is_same<Redop, op::Max<DType>>::value) {
    kernel = SpMMCreateLibxsmmKernel<IdType, DType, Op>(has_idx, N,
                                                        LIBXSMM_MELTW_FLAG_OPREDUCE_VECS_REDOP_MAX,
                                                        true);
  } else if (std::is_same<Redop, op::Min<DType>>::value) {
    kernel = SpMMCreateLibxsmmKernel<IdType, DType, Op>(has_idx, N,
                                                        LIBXSMM_MELTW_FLAG_OPREDUCE_VECS_REDOP_MIN,
                                                        true);
  } else if (std::is_same<Redop, op::Add<DType>>::value) {
    kernel = SpMMCreateLibxsmmKernel<IdType, DType, Op>(has_idx, N,
                                                        LIBXSMM_MELTW_FLAG_OPREDUCE_VECS_REDOP_SUM,
                                                        false);
  }

#ifdef DEBUG
  endTick = __rdtsc();
  LOG(INFO) << "stage2 ticks = " << (endTick - startTick);
  startTick = __rdtsc();
#endif  // DEBUG

  if (std::is_same<Redop, op::Max<DType>>::value || std::is_same<Redop, op::Min<DType>>::value) {
    SpMMBlockwiseOpCmp<IdType, DType, Op, Redop>(block_csr_array, B, E, C, argB, argE, has_idx, N,
                                                 num_M_blocks, num_K_blocks, M_block_size, kernel);
  } else {
    SpMMBlockwiseOpSum(block_csr_array, B, E, C, has_idx, N, num_M_blocks, num_K_blocks,
                       M_block_size, kernel);
  }

#ifdef DEBUG
  endTick = __rdtsc();
  LOG(INFO) << "stage3 ticks = " << (endTick - startTick);
  startTick = __rdtsc();
#endif  // DEBUG

  SpMMFreeBlocks(block_csr_array, num_M_blocks, num_K_blocks, Op::use_lhs, Op::use_rhs);

#ifdef DEBUG
  endTick = __rdtsc();
  LOG(INFO) << "stage4 ticks = " << (endTick - startTick);
#endif  // DEBUG
}

/*!
 * \brief Optimized CPU kernel of SpMM-Sum on Csr format.
 * \param bcast Broadcast information.
 * \param csr The Csr matrix.
 * \param ufeat The feature on source nodes.
 * \param efeat The feature on edges.
 * \param out The result feature on destination nodes.
 * \note it uses libxsmm, blocking and dynamic thread scheduling.
 */
template <typename IdType, typename DType, typename Op>
void SpMMSumCsrLibxsmm(const BcastOff& bcast, const CSRMatrix& csr,
                   NDArray ufeat, NDArray efeat, NDArray out) {
  NDArray dummy;
  SpMMRedopCsrOpt<IdType, DType, Op, op::Add<DType>>(bcast, csr, ufeat, efeat, out, dummy, dummy);
}

/*!
 * \brief Optimized CPU kernel of SpMM-Min/Max on Csr format.
 * \param bcast Broadcast information.
 * \param csr The Csr matrix.
 * \param ufeat The feature on source nodes.
 * \param efeat The feature on edges.
 * \param out The result feature on destination nodes.
 * \param argu Arg-Min/Max on source nodes.
 * \param arge Arg-Min/Max on edges.
 * \note it uses libxsmm, blocking and dynamic thread scheduling.
 */
template <typename IdType, typename DType, typename Op, typename Cmp>
void SpMMCmpCsrLibxsmm(const BcastOff& bcast, const CSRMatrix& csr, NDArray ufeat,
                   NDArray efeat, NDArray out, NDArray argu, NDArray arge) {
  SpMMRedopCsrOpt<IdType, DType, Op, Cmp>(bcast, csr, ufeat, efeat, out, argu, arge);
}

}  // namespace cpu
}  // namespace aten
}  // namespace dgl

#endif  // USE_LIBXSMM
#endif  // USE_AVX
#endif  // _WIN32

#endif  // DGL_ARRAY_CPU_SPMM_BLOCKING_LIBXSMM_H_