"vscode:/vscode.git/clone" did not exist on "0836055324af92cae74a13bdb137fb754b6c8aae"
gcnii.py 4.69 KB
Newer Older
paoxiaode's avatar
paoxiaode committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
"""
[Simple and Deep Graph Convolutional Networks]
(https://arxiv.org/abs/2007.02133)
"""

import math

import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl.data import CoraGraphDataset
from dgl.mock_sparse import create_from_coo, diag, identity
from torch.optim import Adam


class GCNIIConvolution(nn.Module):
    def __init__(self, in_size, out_size):
        super().__init__()
        self.out_size = out_size
        self.weight = nn.Linear(in_size, out_size, bias=False)

    ############################################################################
    # (HIGHLIGHT) Take the advantage of DGL sparse APIs to implement the GCNII
    # forward process.
    ############################################################################
    def forward(self, A_norm, H, H0, lamda, alpha, l):
        beta = math.log(lamda / l + 1)

        # Multiply a sparse matrix by a dense matrix.
        H = A_norm @ H
        H = (1 - alpha) * H + alpha * H0
        H = (1 - beta) * H + beta * self.weight(H)
        return H


class GCNII(nn.Module):
    def __init__(
        self,
        in_size,
        out_size,
        hidden_size,
        n_layers,
        lamda,
        alpha,
        dropout=0.5,
    ):
        super().__init__()
        self.hidden_size = hidden_size
        self.n_layers = n_layers
        self.lamda = lamda
        self.alpha = alpha

        # The GCNII model.
        self.layers = nn.ModuleList()
        self.layers.append(nn.Linear(in_size, hidden_size))
        for _ in range(n_layers):
            self.layers.append(GCNIIConvolution(hidden_size, hidden_size))
        self.layers.append(nn.Linear(hidden_size, out_size))

        self.activation = nn.ReLU()
        self.dropout = dropout

    def forward(self, A_norm, feature):
        H = feature
        H = F.dropout(H, self.dropout, training=self.training)
        H = self.layers[0](H)
        H = self.activation(H)
        H0 = H

        # The GCNII convolution forward.
        for i, conv in enumerate(self.layers[1:-1]):
            H = F.dropout(H, self.dropout, training=self.training)
            H = conv(A_norm, H, H0, self.lamda, self.alpha, i + 1)
            H = self.activation(H)

        H = F.dropout(H, self.dropout, training=self.training)
        H = self.layers[-1](H)

        return H


def evaluate(model, A_norm, H, label, val_mask, test_mask):
    model.eval()
    logits = model(A_norm, H)
    pred = logits.argmax(dim=1)

    # Compute accuracy on validation/test set.
    val_acc = (pred[val_mask] == label[val_mask]).float().mean()
    test_acc = (pred[test_mask] == label[test_mask]).float().mean()
    return val_acc, test_acc


def train(model, g, A_norm, H):
    label = g.ndata["label"]
    train_mask = g.ndata["train_mask"]
    val_mask = g.ndata["val_mask"]
    test_mask = g.ndata["test_mask"]
    optimizer = Adam(model.parameters(), lr=0.01, weight_decay=5e-4)

    loss_fcn = nn.CrossEntropyLoss()

    for epoch in range(100):
        model.train()
        optimizer.zero_grad()

        # Forward.
        logits = model(A_norm, H)

        # Compute loss with nodes in the training set.
        loss = loss_fcn(logits[train_mask], label[train_mask])

        # Backward.
        loss.backward()
        optimizer.step()

        # Evaluate the prediction.
        val_acc, test_acc = evaluate(
            model, A_norm, H, label, val_mask, test_mask
        )
        if epoch % 5 == 0:
            print(
                f"In epoch {epoch}, loss: {loss:.3f}, val acc: {val_acc:.3f}"
                f", test acc: {test_acc:.3f}"
            )


if __name__ == "__main__":
    # If CUDA is available, use GPU to accelerate the training, use CPU
    # otherwise.
    dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    # Load graph from the existing dataset.
    dataset = CoraGraphDataset()
    g = dataset[0].to(dev)
    num_classes = dataset.num_classes
    H = g.ndata["feat"]

    # Create the adjacency matrix of graph.
    src, dst = g.edges()
    N = g.num_nodes()
    A = create_from_coo(dst, src, shape=(N, N))

    ############################################################################
    # (HIGHLIGHT) Compute the symmetrically normalized adjacency matrix with
    # Sparse Matrix API
    ############################################################################
    I = identity(A.shape, device=dev)
    A_hat = A + I
    D_hat = diag(A_hat.sum(1)) ** -0.5
    A_norm = D_hat @ A_hat @ D_hat

    # Create model.
    in_size = H.shape[1]
    out_size = num_classes
    model = GCNII(
        in_size,
        out_size,
        hidden_size=64,
        n_layers=64,
        lamda=0.5,
        alpha=0.2,
        dropout=0.5,
    ).to(dev)

    # Kick off training.
    train(model, g, A_norm, H)