main.py 6.64 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import argparse
import numpy as np
import torch as th
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F

import dgl
from dgl.data import CoraGraphDataset, CiteseerGraphDataset, PubmedGraphDataset

from model import GRAND

import warnings
warnings.filterwarnings('ignore')

def argument():

    parser = argparse.ArgumentParser(description='GRAND')

    # data source params
    parser.add_argument('--dataname', type=str, default='cora', help='Name of dataset.')
    # cuda params
    parser.add_argument('--gpu', type=int, default=-1, help='GPU index. Default: -1, using CPU.')
    # training params
    parser.add_argument('--epochs', type=int, default=200, help='Training epochs.')
    parser.add_argument('--early_stopping', type=int, default=200, help='Patient epochs to wait before early stopping.')
    parser.add_argument('--lr', type=float, default=0.01, help='Learning rate.')
    parser.add_argument('--weight_decay', type=float, default=5e-4, help='L2 reg.')
    # model params
    parser.add_argument("--hid_dim", type=int, default=32, help='Hidden layer dimensionalities.')
    parser.add_argument('--dropnode_rate', type=float, default=0.5,
                        help='Dropnode rate (1 - keep probability).')
    parser.add_argument('--input_droprate', type=float, default=0.0,
                    help='dropout rate of input layer')
    parser.add_argument('--hidden_droprate', type=float, default=0.0,
                    help='dropout rate of hidden layer')
    parser.add_argument('--order', type=int, default=8, help='Propagation step')
    parser.add_argument('--sample', type=int, default=4, help='Sampling times of dropnode')
    parser.add_argument('--tem', type=float, default=0.5, help='Sharpening temperature')
    parser.add_argument('--lam', type=float, default=1., help='Coefficient of consistency regularization')
    parser.add_argument('--use_bn', action='store_true', default=False, help='Using Batch Normalization')

    args = parser.parse_args()
    
    # check cuda
    if args.gpu != -1 and th.cuda.is_available():
        args.device = 'cuda:{}'.format(args.gpu)
    else:
        args.device = 'cpu'

    return args

def consis_loss(logps, temp, lam):
    ps = [th.exp(p) for p in logps]
    ps = th.stack(ps, dim = 2)
    
    avg_p = th.mean(ps, dim = 2)
    sharp_p = (th.pow(avg_p, 1./temp) / th.sum(th.pow(avg_p, 1./temp), dim=1, keepdim=True)).detach()

    sharp_p = sharp_p.unsqueeze(2)
    loss = th.mean(th.sum(th.pow(ps - sharp_p, 1./temp), dim = 1, keepdim=True))

    loss = lam * loss
    return loss

if __name__ == '__main__':

    # Step 1: Prepare graph data and retrieve train/validation/test index ============================= #
    # Load from DGL dataset
    args = argument()
    print(args)

    if args.dataname == 'cora':
        dataset = CoraGraphDataset()
    elif args.dataname == 'citeseer':
        dataset = CiteseerGraphDataset()
    elif args.dataname == 'pubmed':
        dataset = PubmedGraphDataset()
        
    graph = dataset[0]
    
    graph = dgl.add_self_loop(graph)
    device = args.device

    # retrieve the number of classes
    n_classes = dataset.num_classes

    # retrieve labels of ground truth
    labels = graph.ndata.pop('label').to(device).long()
    
    # Extract node features
    feats = graph.ndata.pop('feat').to(device)
    n_features = feats.shape[-1]

    # retrieve masks for train/validation/test
    train_mask = graph.ndata.pop('train_mask')
    val_mask = graph.ndata.pop('val_mask')
    test_mask = graph.ndata.pop('test_mask')

    train_idx = th.nonzero(train_mask, as_tuple=False).squeeze().to(device)
    val_idx = th.nonzero(val_mask, as_tuple=False).squeeze().to(device)
    test_idx = th.nonzero(test_mask, as_tuple=False).squeeze().to(device)

    # Step 2: Create model =================================================================== #
    
    model = GRAND(n_features, args.hid_dim, n_classes, args.sample, args.order,
                  args.dropnode_rate, args.input_droprate, 
                  args.hidden_droprate, args.use_bn)

    
    model = model.to(args.device)
    graph = graph.to(args.device)
    
    # Step 3: Create training components ===================================================== #
    loss_fn = nn.NLLLoss()
    opt = optim.Adam(model.parameters(), lr = args.lr, weight_decay = args.weight_decay)

    loss_best = np.inf
    acc_best = 0
    
    # Step 4: training epoches =============================================================== #
    for epoch in range(args.epochs):

        ''' Training '''
        model.train()
        
        loss_sup = 0
        logits = model(graph, feats, True)
        
        # calculate supervised loss
        for k in range(args.sample):
            loss_sup += F.nll_loss(logits[k][train_idx], labels[train_idx])
        
        loss_sup = loss_sup/args.sample
        
        # calculate consistency loss
        loss_consis = consis_loss(logits, args.tem, args.lam)
        
        loss_train = loss_sup + loss_consis
        acc_train = th.sum(logits[0][train_idx].argmax(dim=1) == labels[train_idx]).item() / len(train_idx)

        # backward
        opt.zero_grad()
        loss_train.backward()
        opt.step()

        ''' Validating '''
        model.eval()
        with th.no_grad():
        
            val_logits = model(graph, feats, False)
            
            loss_val = F.nll_loss(val_logits[val_idx], labels[val_idx]) 
            acc_val = th.sum(val_logits[val_idx].argmax(dim=1) == labels[val_idx]).item() / len(val_idx)

            # Print out performance
            print("In epoch {}, Train Acc: {:.4f} | Train Loss: {:.4f} ,Val Acc: {:.4f} | Val Loss: {:.4f}".
              format(epoch, acc_train, loss_train.item(), acc_val, loss_val.item()))

            # set early stopping counter
            if loss_val < loss_best or acc_val > acc_best:
                if loss_val < loss_best:
                    best_epoch = epoch
                    th.save(model.state_dict(), args.dataname +'.pkl')
                no_improvement = 0
                loss_best = min(loss_val, loss_best)
                acc_best = max(acc_val, acc_best)
            else:
                no_improvement += 1
                if no_improvement == args.early_stopping:
                    print('Early stopping.')
                    break
        
    print("Optimization Finished!")
    
    print('Loading {}th epoch'.format(best_epoch))
    model.load_state_dict(th.load(args.dataname +'.pkl'))
    
    ''' Testing '''
    model.eval()
    
    test_logits = model(graph, feats, False)  
    test_acc = th.sum(test_logits[test_idx].argmax(dim=1) == labels[test_idx]).item() / len(test_idx)

    print("Test Acc: {:.4f}".format(test_acc))