gin.py 7.42 KB
Newer Older
kitaev-chen's avatar
kitaev-chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
"""
How Powerful are Graph Neural Networks
https://arxiv.org/abs/1810.00826
https://openreview.net/forum?id=ryGs6iA5Km
Author's implementation: https://github.com/weihua916/powerful-gnns
"""


import torch
import torch.nn as nn
import torch.nn.functional as F

import dgl
import dgl.function as fn


# Sends a message of node feature h.
msg = fn.copy_src(src='h', out='m')
reduce_sum = fn.sum(msg='m', out='h')
reduce_max = fn.max(msg='m', out='h')


def reduce_mean(nodes):
    return {'h': torch.mean(nodes.mailbox['m'], dim=1)[0]}


class ApplyNodes(nn.Module):
    """Update the node feature hv with MLP, BN and ReLU."""
    def __init__(self, mlp, layer):
        super(ApplyNodes, self).__init__()
        self.mlp = mlp
        self.bn = nn.BatchNorm1d(self.mlp.output_dim)
        self.layer = layer

    def forward(self, nodes):
        h = self.mlp(nodes.data['h'])
        h = self.bn(h)
        h = F.relu(h)

        return {'h': h}


class GINLayer(nn.Module):
    """Neighbor pooling and reweight nodes before send graph into MLP"""
    def __init__(self, eps, layer, mlp, neighbor_pooling_type, learn_eps):
        super(GINLayer, self).__init__()
        self.bn = nn.BatchNorm1d(mlp.output_dim)
        self.neighbor_pooling_type = neighbor_pooling_type
        self.eps = eps
        self.learn_eps = learn_eps
        self.layer = layer
        self.apply_mod = ApplyNodes(mlp, layer)

    def forward(self, g, feature):
        g.ndata['h'] = feature

        if self.neighbor_pooling_type == 'sum':
            reduce_func = reduce_sum
        elif self.neighbor_pooling_type == 'mean':
            reduce_func = reduce_mean
        elif self.neighbor_pooling_type == 'max':
            reduce_func = reduce_max
        else:
            raise NotImplementedError()

        h = feature  # h0
        g.update_all(msg, reduce_func)
        pooled = g.ndata['h']

        # reweight the center node when aggregating it with its neighbors
        if self.learn_eps:
            pooled = pooled + (1 + self.eps[self.layer])*h

        g.ndata['h'] = pooled
        g.apply_nodes(func=self.apply_mod)

        return g.ndata.pop('h')


class MLP(nn.Module):
    """MLP with linear output"""
    def __init__(self, num_layers, input_dim, hidden_dim, output_dim):
        """MLP layers construction

        Paramters
        ---------
        num_layers: int
            The number of linear layers
        input_dim: int
            The dimensionality of input features
        hidden_dim: int
            The dimensionality of hidden units at ALL layers
        output_dim: int
            The number of classes for prediction

        """
        super(MLP, self).__init__()
        self.linear_or_not = True  # default is linear model
        self.num_layers = num_layers
        self.output_dim = output_dim

        if num_layers < 1:
            raise ValueError("number of layers should be positive!")
        elif num_layers == 1:
            # Linear model
            self.linear = nn.Linear(input_dim, output_dim)
        else:
            # Multi-layer model
            self.linear_or_not = False
            self.linears = torch.nn.ModuleList()
            self.batch_norms = torch.nn.ModuleList()

            self.linears.append(nn.Linear(input_dim, hidden_dim))
            for layer in range(num_layers - 2):
                self.linears.append(nn.Linear(hidden_dim, hidden_dim))
            self.linears.append(nn.Linear(hidden_dim, output_dim))

            for layer in range(num_layers - 1):
                self.batch_norms.append(nn.BatchNorm1d((hidden_dim)))

    def forward(self, x):
        if self.linear_or_not:
            # If linear model
            return self.linear(x)
        else:
            # If MLP
            h = x
            for layer in range(self.num_layers - 1):
                h = F.relu(self.batch_norms[layer](self.linears[layer](h)))
            return self.linears[self.num_layers - 1](h)


class GIN(nn.Module):
    """GIN model"""
    def __init__(self, num_layers, num_mlp_layers, input_dim, hidden_dim,
                 output_dim, final_dropout, learn_eps, graph_pooling_type,
                 neighbor_pooling_type, device):
        """model parameters setting

        Paramters
        ---------
        num_layers: int
            The number of linear layers in the neural network
        num_mlp_layers: int
            The number of linear layers in mlps
        input_dim: int
            The dimensionality of input features
        hidden_dim: int
            The dimensionality of hidden units at ALL layers
        output_dim: int
            The number of classes for prediction
        final_dropout: float
            dropout ratio on the final linear layer
        learn_eps: boolean
            If True, learn epsilon to distinguish center nodes from neighbors
            If False, aggregate neighbors and center nodes altogether.
        neighbor_pooling_type: str
            how to aggregate neighbors (sum, mean, or max)
        graph_pooling_type: str
            how to aggregate entire nodes in a graph (sum, mean or max)
        device: str
            which device to use

        """
        super(GIN, self).__init__()
        self.final_dropout = final_dropout
        self.device = device
        self.num_layers = num_layers
        self.graph_pooling_type = graph_pooling_type
        self.learn_eps = learn_eps
        self.eps = nn.Parameter(torch.zeros(self.num_layers - 1))

        # List of MLPs
        self.ginlayers = torch.nn.ModuleList()
        self.batch_norms = torch.nn.ModuleList()

        for layer in range(self.num_layers - 1):
            if layer == 0:
                mlp = MLP(num_mlp_layers, input_dim, hidden_dim, hidden_dim)
            else:
                mlp = MLP(num_mlp_layers, hidden_dim, hidden_dim, hidden_dim)

            self.ginlayers.append(GINLayer(
                self.eps, layer, mlp, neighbor_pooling_type, self.learn_eps))
            self.batch_norms.append(nn.BatchNorm1d(hidden_dim))

        # Linear function for graph poolings of output of each layer
        # which maps the output of different layers into a prediction score
        self.linears_prediction = torch.nn.ModuleList()

        for layer in range(num_layers):
            if layer == 0:
                self.linears_prediction.append(
                    nn.Linear(input_dim, output_dim))
            else:
                self.linears_prediction.append(
                    nn.Linear(hidden_dim, output_dim))

    def forward(self, g):
        h = g.ndata['attr']
        h = h.to(self.device)

        # list of hidden representation at each layer (including input)
        hidden_rep = [h]

        for layer in range(self.num_layers - 1):
            h = self.ginlayers[layer](g, h)
            hidden_rep.append(h)

        score_over_layer = 0

        # perform pooling over all nodes in each graph in every layer
        for layer, h in enumerate(hidden_rep):
            g.ndata['h'] = h
            if self.graph_pooling_type == 'sum':
                pooled_h = dgl.sum_nodes(g, 'h')
            elif self.graph_pooling_type == 'mean':
                pooled_h = dgl.mean_nodes(g, 'h')
            elif self.graph_pooling_type == 'max':
                pooled_h = dgl.max_nodes(g, 'h')
            else:
                raise NotImplementedError()

            score_over_layer += F.dropout(
                self.linears_prediction[layer](pooled_h),
                self.final_dropout,
                training=self.training)

        return score_over_layer