general_models.py 9.05 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import os
import numpy as np
import dgl.backend as F

backend = os.environ.get('DGLBACKEND')
if backend.lower() == 'mxnet':
    from .mxnet.tensor_models import logsigmoid
    from .mxnet.tensor_models import get_device
    from .mxnet.tensor_models import norm
    from .mxnet.tensor_models import get_scalar
    from .mxnet.tensor_models import reshape
    from .mxnet.tensor_models import cuda
    from .mxnet.tensor_models import ExternalEmbedding
    from .mxnet.score_fun import *
else:
    from .pytorch.tensor_models import logsigmoid
    from .pytorch.tensor_models import get_device
    from .pytorch.tensor_models import norm
    from .pytorch.tensor_models import get_scalar
    from .pytorch.tensor_models import reshape
    from .pytorch.tensor_models import cuda
    from .pytorch.tensor_models import ExternalEmbedding
    from .pytorch.score_fun import *

class KEModel(object):
    def __init__(self, args, model_name, n_entities, n_relations, hidden_dim, gamma,
                 double_entity_emb=False, double_relation_emb=False):
        super(KEModel, self).__init__()
        self.args = args
        self.n_entities = n_entities
        self.model_name = model_name
        self.hidden_dim = hidden_dim
        self.eps = 2.0
        self.emb_init = (gamma + self.eps) / hidden_dim

        entity_dim = 2 * hidden_dim if double_entity_emb else hidden_dim
        relation_dim = 2 * hidden_dim if double_relation_emb else hidden_dim

        device = get_device(args)
        self.entity_emb = ExternalEmbedding(args, n_entities, entity_dim,
                                            F.cpu() if args.mix_cpu_gpu else device)
        # For RESCAL, relation_emb = relation_dim * entity_dim
        if model_name == 'RESCAL':
            rel_dim = relation_dim * entity_dim
        else:
            rel_dim = relation_dim
        self.relation_emb = ExternalEmbedding(args, n_relations, rel_dim, device)

        if model_name == 'TransE':
            self.score_func = TransEScore(gamma)
51
52
53
54
        elif model_name == 'TransR':
            projection_emb = ExternalEmbedding(args, n_relations, entity_dim * relation_dim,
                                               F.cpu() if args.mix_cpu_gpu else device)
            self.score_func = TransRScore(gamma, projection_emb, relation_dim, entity_dim)
55
56
57
58
        elif model_name == 'DistMult':
            self.score_func = DistMultScore()
        elif model_name == 'ComplEx':
            self.score_func = ComplExScore()
59
60
61
        elif model_name == 'RESCAL':
            self.score_func = RESCALScore(relation_dim, entity_dim)
            
62
63
        self.head_neg_score = self.score_func.create_neg(True)
        self.tail_neg_score = self.score_func.create_neg(False)
64
65
        self.head_neg_prepare = self.score_func.create_neg_prepare(True)
        self.tail_neg_prepare = self.score_func.create_neg_prepare(False)
66
67
68
69
70
71
72
73
74
75
76

        self.reset_parameters()

    def share_memory(self):
        # TODO(zhengda) we should make it work for parameters in score func
        self.entity_emb.share_memory()
        self.relation_emb.share_memory()

    def save_emb(self, path, dataset):
        self.entity_emb.save(path, dataset+'_'+self.model_name+'_entity')
        self.relation_emb.save(path, dataset+'_'+self.model_name+'_relation')
77
        self.score_func.save(path, dataset+'_'+self.model_name)
78
79
80
81

    def load_emb(self, path, dataset):
        self.entity_emb.load(path, dataset+'_'+self.model_name+'_entity')
        self.relation_emb.load(path, dataset+'_'+self.model_name+'_relation')
82
        self.score_func.load(path, dataset+'_'+self.model_name)
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

    def reset_parameters(self):
        self.entity_emb.init(self.emb_init)
        self.relation_emb.init(self.emb_init)
        self.score_func.reset_parameters()

    def predict_score(self, g):
        self.score_func(g)
        return g.edata['score']

    def predict_neg_score(self, pos_g, neg_g, to_device=None, gpu_id=-1, trace=False):
        num_chunks = neg_g.num_chunks
        chunk_size = neg_g.chunk_size
        neg_sample_size = neg_g.neg_sample_size
        if neg_g.neg_head:
            neg_head_ids = neg_g.ndata['id'][neg_g.head_nid]
            neg_head = self.entity_emb(neg_head_ids, gpu_id, trace)
            _, tail_ids = pos_g.all_edges(order='eid')
            if to_device is not None and gpu_id >= 0:
                tail_ids = to_device(tail_ids, gpu_id)
            tail = pos_g.ndata['emb'][tail_ids]
            rel = pos_g.edata['emb']
105
106

            neg_head, tail = self.head_neg_prepare(pos_g.edata['id'], num_chunks, neg_head, tail, gpu_id, trace)
107
108
109
110
111
112
113
114
115
116
            neg_score = self.head_neg_score(neg_head, rel, tail,
                                            num_chunks, chunk_size, neg_sample_size)
        else:
            neg_tail_ids = neg_g.ndata['id'][neg_g.tail_nid]
            neg_tail = self.entity_emb(neg_tail_ids, gpu_id, trace)
            head_ids, _ = pos_g.all_edges(order='eid')
            if to_device is not None and gpu_id >= 0:
                head_ids = to_device(head_ids, gpu_id)
            head = pos_g.ndata['emb'][head_ids]
            rel = pos_g.edata['emb']
117
118

            head, neg_tail = self.tail_neg_prepare(pos_g.edata['id'], num_chunks, head, neg_tail, gpu_id, trace)
119
120
121
122
123
124
125
126
127
            neg_score = self.tail_neg_score(head, rel, neg_tail,
                                            num_chunks, chunk_size, neg_sample_size)

        return neg_score

    def forward_test(self, pos_g, neg_g, logs, gpu_id=-1):
        pos_g.ndata['emb'] = self.entity_emb(pos_g.ndata['id'], gpu_id, False)
        pos_g.edata['emb'] = self.relation_emb(pos_g.edata['id'], gpu_id, False)

128
129
        self.score_func.prepare(pos_g, gpu_id, False)

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
        batch_size = pos_g.number_of_edges()
        pos_scores = self.predict_score(pos_g)
        pos_scores = reshape(logsigmoid(pos_scores), batch_size, -1)

        neg_scores = self.predict_neg_score(pos_g, neg_g, to_device=cuda,
                                            gpu_id=gpu_id, trace=False)
        neg_scores = reshape(logsigmoid(neg_scores), batch_size, -1)

        # We need to filter the positive edges in the negative graph.
        filter_bias = reshape(neg_g.edata['bias'], batch_size, -1)
        if self.args.gpu >= 0:
            filter_bias = cuda(filter_bias, self.args.gpu)
        neg_scores += filter_bias
        # To compute the rank of a positive edge among all negative edges,
        # we need to know how many negative edges have higher scores than
        # the positive edge.
        rankings = F.sum(neg_scores > pos_scores, dim=1) + 1
        rankings = F.asnumpy(rankings)
        for i in range(batch_size):
            ranking = rankings[i]
            logs.append({
                'MRR': 1.0 / ranking,
                'MR': float(ranking),
                'HITS@1': 1.0 if ranking <= 1 else 0.0,
                'HITS@3': 1.0 if ranking <= 3 else 0.0,
                'HITS@10': 1.0 if ranking <= 10 else 0.0
            })

    # @profile
    def forward(self, pos_g, neg_g, gpu_id=-1):
        pos_g.ndata['emb'] = self.entity_emb(pos_g.ndata['id'], gpu_id, True)
        pos_g.edata['emb'] = self.relation_emb(pos_g.edata['id'], gpu_id, True)

163
164
        self.score_func.prepare(pos_g, gpu_id, True)

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
        pos_score = self.predict_score(pos_g)
        pos_score = logsigmoid(pos_score)
        if gpu_id >= 0:
            neg_score = self.predict_neg_score(pos_g, neg_g, to_device=cuda,
                                               gpu_id=gpu_id, trace=True)
        else:
            neg_score = self.predict_neg_score(pos_g, neg_g, trace=True)

        neg_score = reshape(neg_score, -1, neg_g.neg_sample_size)
        # Adversarial sampling
        if self.args.neg_adversarial_sampling:
            neg_score = F.sum(F.softmax(neg_score * self.args.adversarial_temperature, dim=1).detach()
                         * logsigmoid(-neg_score), dim=1)
        else:
            neg_score = F.mean(logsigmoid(-neg_score), dim=1)

        # subsampling weight
        # TODO: add subsampling to new sampler
        if self.args.non_uni_weight:
            subsampling_weight = pos_g.edata['weight']
            pos_score = (pos_score * subsampling_weight).sum() / subsampling_weight.sum()
            neg_score = (neg_score * subsampling_weight).sum() / subsampling_weight.sum()
        else:
            pos_score = pos_score.mean()
            neg_score = neg_score.mean()

        # compute loss
        loss = -(pos_score + neg_score) / 2

        log = {'pos_loss': - get_scalar(pos_score),
               'neg_loss': - get_scalar(neg_score),
               'loss': get_scalar(loss)}

        # regularization: TODO(zihao)
        #TODO: only reg ent&rel embeddings. other params to be added.
        if self.args.regularization_coef > 0.0 and self.args.regularization_norm > 0:
            coef, nm = self.args.regularization_coef, self.args.regularization_norm
            reg = coef * (norm(self.entity_emb.curr_emb(), nm) + norm(self.relation_emb.curr_emb(), nm))
            log['regularization'] = get_scalar(reg)
            loss = loss + reg

        return loss, log

    def update(self):
        self.entity_emb.update()
        self.relation_emb.update()
211
        self.score_func.update()