spmat_op_impl_csr.cc 22.5 KB
Newer Older
1
2
/*!
 *  Copyright (c) 2019 by Contributors
3
4
 * \file array/cpu/spmat_op_impl_csr.cc
 * \brief CSR matrix operator CPU implementation
5
6
 */
#include <dgl/array.h>
7
#include <dgl/runtime/parallel_for.h>
8
9
#include <vector>
#include <unordered_set>
10
#include <numeric>
11
#include "array_utils.h"
12
13
14
15

namespace dgl {

using runtime::NDArray;
16
using runtime::parallel_for;
17
18
19
20
21
22
23
24
25
26

namespace aten {
namespace impl {

///////////////////////////// CSRIsNonZero /////////////////////////////

template <DLDeviceType XPU, typename IdType>
bool CSRIsNonZero(CSRMatrix csr, int64_t row, int64_t col) {
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
Da Zheng's avatar
Da Zheng committed
27
28
29
30
31
32
33
34
35
  if (csr.sorted) {
    const IdType *start = indices_data + indptr_data[row];
    const IdType *end = indices_data + indptr_data[row + 1];
    return std::binary_search(start, end, col);
  } else {
    for (IdType i = indptr_data[row]; i < indptr_data[row + 1]; ++i) {
      if (indices_data[i] == col) {
        return true;
      }
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
    }
  }
  return false;
}

template bool CSRIsNonZero<kDLCPU, int32_t>(CSRMatrix, int64_t, int64_t);
template bool CSRIsNonZero<kDLCPU, int64_t>(CSRMatrix, int64_t, int64_t);

template <DLDeviceType XPU, typename IdType>
NDArray CSRIsNonZero(CSRMatrix csr, NDArray row, NDArray col) {
  const auto rowlen = row->shape[0];
  const auto collen = col->shape[0];
  const auto rstlen = std::max(rowlen, collen);
  NDArray rst = NDArray::Empty({rstlen}, row->dtype, row->ctx);
  IdType* rst_data = static_cast<IdType*>(rst->data);
  const IdType* row_data = static_cast<IdType*>(row->data);
  const IdType* col_data = static_cast<IdType*>(col->data);
  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
55
56
57
58
59
60
  runtime::parallel_for(0, std::max(rowlen, collen), 1, [=](int64_t b, int64_t e) {
    int64_t i = (row_stride == 0) ? 0 : b;
    int64_t j = (col_stride == 0) ? 0 : b;
    for (int64_t k = b; i < e && j < e; i += row_stride, j += col_stride, ++k)
      rst_data[k] = CSRIsNonZero<XPU, IdType>(csr, row_data[i], col_data[j]) ? 1 : 0;
  });
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
  return rst;
}

template NDArray CSRIsNonZero<kDLCPU, int32_t>(CSRMatrix, NDArray, NDArray);
template NDArray CSRIsNonZero<kDLCPU, int64_t>(CSRMatrix, NDArray, NDArray);

///////////////////////////// CSRHasDuplicate /////////////////////////////

template <DLDeviceType XPU, typename IdType>
bool CSRHasDuplicate(CSRMatrix csr) {
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
  for (IdType src = 0; src < csr.num_rows; ++src) {
    std::unordered_set<IdType> hashmap;
    for (IdType eid = indptr_data[src]; eid < indptr_data[src+1]; ++eid) {
      const IdType dst = indices_data[eid];
      if (hashmap.count(dst)) {
        return true;
      } else {
        hashmap.insert(dst);
      }
    }
  }
  return false;
}

template bool CSRHasDuplicate<kDLCPU, int32_t>(CSRMatrix csr);
template bool CSRHasDuplicate<kDLCPU, int64_t>(CSRMatrix csr);

///////////////////////////// CSRGetRowNNZ /////////////////////////////

template <DLDeviceType XPU, typename IdType>
int64_t CSRGetRowNNZ(CSRMatrix csr, int64_t row) {
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  return indptr_data[row + 1] - indptr_data[row];
}

template int64_t CSRGetRowNNZ<kDLCPU, int32_t>(CSRMatrix, int64_t);
template int64_t CSRGetRowNNZ<kDLCPU, int64_t>(CSRMatrix, int64_t);

template <DLDeviceType XPU, typename IdType>
NDArray CSRGetRowNNZ(CSRMatrix csr, NDArray rows) {
103
  CHECK_SAME_DTYPE(csr.indices, rows);
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
  const auto len = rows->shape[0];
  const IdType* vid_data = static_cast<IdType*>(rows->data);
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  NDArray rst = NDArray::Empty({len}, rows->dtype, rows->ctx);
  IdType* rst_data = static_cast<IdType*>(rst->data);
  for (int64_t i = 0; i < len; ++i) {
    const auto vid = vid_data[i];
    rst_data[i] = indptr_data[vid + 1] - indptr_data[vid];
  }
  return rst;
}

template NDArray CSRGetRowNNZ<kDLCPU, int32_t>(CSRMatrix, NDArray);
template NDArray CSRGetRowNNZ<kDLCPU, int64_t>(CSRMatrix, NDArray);

///////////////////////////// CSRGetRowColumnIndices /////////////////////////////

template <DLDeviceType XPU, typename IdType>
NDArray CSRGetRowColumnIndices(CSRMatrix csr, int64_t row) {
  const int64_t len = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const int64_t offset = indptr_data[row] * sizeof(IdType);
  return csr.indices.CreateView({len}, csr.indices->dtype, offset);
}

template NDArray CSRGetRowColumnIndices<kDLCPU, int32_t>(CSRMatrix, int64_t);
template NDArray CSRGetRowColumnIndices<kDLCPU, int64_t>(CSRMatrix, int64_t);

///////////////////////////// CSRGetRowData /////////////////////////////

134
template <DLDeviceType XPU, typename IdType>
135
136
137
NDArray CSRGetRowData(CSRMatrix csr, int64_t row) {
  const int64_t len = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
138
139
140
141
142
  const int64_t offset = indptr_data[row] * sizeof(IdType);
  if (CSRHasData(csr))
    return csr.data.CreateView({len}, csr.data->dtype, offset);
  else
    return aten::Range(offset, offset + len, csr.indptr->dtype.bits, csr.indptr->ctx);
143
144
}

145
146
template NDArray CSRGetRowData<kDLCPU, int32_t>(CSRMatrix, int64_t);
template NDArray CSRGetRowData<kDLCPU, int64_t>(CSRMatrix, int64_t);
147
148
149
150

///////////////////////////// CSRGetData /////////////////////////////
///////////////////////////// CSRGetDataAndIndices /////////////////////////////

151
152
template <DLDeviceType XPU, typename IdType>
void CollectDataIndicesFromSorted(const IdType *indices_data, const IdType *data,
Da Zheng's avatar
Da Zheng committed
153
154
                                  const IdType start, const IdType end, const IdType col,
                                  std::vector<IdType> *col_vec,
155
                                  std::vector<IdType> *ret_vec) {
Da Zheng's avatar
Da Zheng committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
  const IdType *start_ptr = indices_data + start;
  const IdType *end_ptr = indices_data + end;
  auto it = std::lower_bound(start_ptr, end_ptr, col);
  // This might be a multi-graph. We need to collect all of the matched
  // columns.
  for (; it != end_ptr; it++) {
    // If the col exist
    if (*it == col) {
      IdType idx = it - indices_data;
      col_vec->push_back(indices_data[idx]);
      ret_vec->push_back(data[idx]);
    } else {
      // If we find a column that is different, we can stop searching now.
      break;
    }
  }
}

174
template <DLDeviceType XPU, typename IdType>
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
std::vector<NDArray> CSRGetDataAndIndices(CSRMatrix csr, NDArray rows, NDArray cols) {
  // TODO(minjie): more efficient implementation for matrix without duplicate entries
  const int64_t rowlen = rows->shape[0];
  const int64_t collen = cols->shape[0];

  CHECK((rowlen == collen) || (rowlen == 1) || (collen == 1))
    << "Invalid row and col id array.";

  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  const IdType* row_data = static_cast<IdType*>(rows->data);
  const IdType* col_data = static_cast<IdType*>(cols->data);

  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
190
  const IdType* data = CSRHasData(csr)? static_cast<IdType*>(csr.data->data) : nullptr;
191
192

  std::vector<IdType> ret_rows, ret_cols;
193
  std::vector<IdType> ret_data;
194
195
196
197
198

  for (int64_t i = 0, j = 0; i < rowlen && j < collen; i += row_stride, j += col_stride) {
    const IdType row_id = row_data[i], col_id = col_data[j];
    CHECK(row_id >= 0 && row_id < csr.num_rows) << "Invalid row index: " << row_id;
    CHECK(col_id >= 0 && col_id < csr.num_cols) << "Invalid col index: " << col_id;
Da Zheng's avatar
Da Zheng committed
199
200
    if (csr.sorted) {
      // Here we collect col indices and data.
201
202
203
204
205
      CollectDataIndicesFromSorted<XPU, IdType>(indices_data, data,
                                                indptr_data[row_id],
                                                indptr_data[row_id + 1],
                                                col_id, &ret_cols,
                                                &ret_data);
Da Zheng's avatar
Da Zheng committed
206
207
208
209
210
211
212
      // We need to add row Ids.
      while (ret_rows.size() < ret_data.size()) {
        ret_rows.push_back(row_id);
      }
    } else {
      for (IdType i = indptr_data[row_id]; i < indptr_data[row_id+1]; ++i) {
        if (indices_data[i] == col_id) {
213
214
          ret_rows.push_back(row_id);
          ret_cols.push_back(col_id);
215
          ret_data.push_back(data? data[i] : i);
Da Zheng's avatar
Da Zheng committed
216
        }
217
218
219
220
      }
    }
  }

221
222
223
  return {NDArray::FromVector(ret_rows, csr.indptr->ctx),
          NDArray::FromVector(ret_cols, csr.indptr->ctx),
          NDArray::FromVector(ret_data, csr.data->ctx)};
224
225
}

226
template std::vector<NDArray> CSRGetDataAndIndices<kDLCPU, int32_t>(
227
    CSRMatrix csr, NDArray rows, NDArray cols);
228
template std::vector<NDArray> CSRGetDataAndIndices<kDLCPU, int64_t>(
229
230
231
232
233
234
    CSRMatrix csr, NDArray rows, NDArray cols);

///////////////////////////// CSRTranspose /////////////////////////////

// for a matrix of shape (N, M) and NNZ
// complexity: time O(NNZ + max(N, M)), space O(1)
235
template <DLDeviceType XPU, typename IdType>
236
237
238
239
240
241
CSRMatrix CSRTranspose(CSRMatrix csr) {
  const int64_t N = csr.num_rows;
  const int64_t M = csr.num_cols;
  const int64_t nnz = csr.indices->shape[0];
  const IdType* Ap = static_cast<IdType*>(csr.indptr->data);
  const IdType* Aj = static_cast<IdType*>(csr.indices->data);
242
  const IdType* Ax = CSRHasData(csr)? static_cast<IdType*>(csr.data->data) : nullptr;
243
244
  NDArray ret_indptr = NDArray::Empty({M + 1}, csr.indptr->dtype, csr.indptr->ctx);
  NDArray ret_indices = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
245
  NDArray ret_data = NDArray::Empty({nnz}, csr.indptr->dtype, csr.indptr->ctx);
246
247
  IdType* Bp = static_cast<IdType*>(ret_indptr->data);
  IdType* Bi = static_cast<IdType*>(ret_indices->data);
248
  IdType* Bx = static_cast<IdType*>(ret_data->data);
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

  std::fill(Bp, Bp + M, 0);

  for (int64_t j = 0; j < nnz; ++j) {
    Bp[Aj[j]]++;
  }

  // cumsum
  for (int64_t i = 0, cumsum = 0; i < M; ++i) {
    const IdType temp = Bp[i];
    Bp[i] = cumsum;
    cumsum += temp;
  }
  Bp[M] = nnz;

  for (int64_t i = 0; i < N; ++i) {
    for (IdType j = Ap[i]; j < Ap[i+1]; ++j) {
      const IdType dst = Aj[j];
      Bi[Bp[dst]] = i;
268
      Bx[Bp[dst]] = Ax? Ax[j] : j;
269
270
271
272
273
274
275
276
277
278
279
280
281
282
      Bp[dst]++;
    }
  }

  // correct the indptr
  for (int64_t i = 0, last = 0; i <= M; ++i) {
    IdType temp = Bp[i];
    Bp[i] = last;
    last = temp;
  }

  return CSRMatrix{csr.num_cols, csr.num_rows, ret_indptr, ret_indices, ret_data};
}

283
284
template CSRMatrix CSRTranspose<kDLCPU, int32_t>(CSRMatrix csr);
template CSRMatrix CSRTranspose<kDLCPU, int64_t>(CSRMatrix csr);
285
286
287
288
289
290
291
292
293
294
295
296
297

///////////////////////////// CSRToCOO /////////////////////////////
template <DLDeviceType XPU, typename IdType>
COOMatrix CSRToCOO(CSRMatrix csr) {
  const int64_t nnz = csr.indices->shape[0];
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  NDArray ret_row = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  IdType* ret_row_data = static_cast<IdType*>(ret_row->data);
  for (IdType i = 0; i < csr.indptr->shape[0] - 1; ++i) {
    std::fill(ret_row_data + indptr_data[i],
              ret_row_data + indptr_data[i + 1],
              i);
  }
298
299
300
  return COOMatrix(csr.num_rows, csr.num_cols,
                   ret_row, csr.indices, csr.data,
                   true, csr.sorted);
301
302
303
304
305
306
307
308
309
310
311
312
313
314
}

template COOMatrix CSRToCOO<kDLCPU, int32_t>(CSRMatrix csr);
template COOMatrix CSRToCOO<kDLCPU, int64_t>(CSRMatrix csr);

// complexity: time O(NNZ), space O(1)
template <DLDeviceType XPU, typename IdType>
COOMatrix CSRToCOODataAsOrder(CSRMatrix csr) {
  const int64_t N = csr.num_rows;
  const int64_t M = csr.num_cols;
  const int64_t nnz = csr.indices->shape[0];
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
  // data array should have the same type as the indices arrays
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
315
  const IdType* data = CSRHasData(csr) ? static_cast<IdType*>(csr.data->data) : nullptr;
316
317
318
319
320
321
322
323
  NDArray ret_row = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  NDArray ret_col = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  IdType* ret_row_data = static_cast<IdType*>(ret_row->data);
  IdType* ret_col_data = static_cast<IdType*>(ret_col->data);
  // scatter using the indices in the data array
  for (IdType row = 0; row < N; ++row) {
    for (IdType j = indptr_data[row]; j < indptr_data[row + 1]; ++j) {
      const IdType col = indices_data[j];
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
324
325
      ret_row_data[data ? data[j] : j] = row;
      ret_col_data[data ? data[j] : j] = col;
326
327
    }
  }
328
  return COOMatrix(N, M, ret_row, ret_col);
329
330
331
332
333
334
335
}

template COOMatrix CSRToCOODataAsOrder<kDLCPU, int32_t>(CSRMatrix csr);
template COOMatrix CSRToCOODataAsOrder<kDLCPU, int64_t>(CSRMatrix csr);

///////////////////////////// CSRSliceRows /////////////////////////////

336
template <DLDeviceType XPU, typename IdType>
337
338
339
340
CSRMatrix CSRSliceRows(CSRMatrix csr, int64_t start, int64_t end) {
  const IdType* indptr = static_cast<IdType*>(csr.indptr->data);
  const int64_t num_rows = end - start;
  const int64_t nnz = indptr[end] - indptr[start];
341
342
  IdArray ret_indptr = IdArray::Empty({num_rows + 1}, csr.indptr->dtype, csr.indices->ctx);
  IdType* r_indptr = static_cast<IdType*>(ret_indptr->data);
343
344
345
346
  for (int64_t i = start; i < end + 1; ++i) {
    r_indptr[i - start] = indptr[i] - indptr[start];
  }
  // indices and data can be view arrays
347
348
349
350
351
352
353
354
355
356
357
  IdArray ret_indices = csr.indices.CreateView(
      {nnz}, csr.indices->dtype, indptr[start] * sizeof(IdType));
  IdArray ret_data;
  if (CSRHasData(csr))
    ret_data = csr.data.CreateView({nnz}, csr.data->dtype, indptr[start] * sizeof(IdType));
  else
    ret_data = aten::Range(indptr[start], indptr[end],
                           csr.indptr->dtype.bits, csr.indptr->ctx);
  return CSRMatrix(num_rows, csr.num_cols,
                   ret_indptr, ret_indices, ret_data,
                   csr.sorted);
358
359
}

360
361
template CSRMatrix CSRSliceRows<kDLCPU, int32_t>(CSRMatrix, int64_t, int64_t);
template CSRMatrix CSRSliceRows<kDLCPU, int64_t>(CSRMatrix, int64_t, int64_t);
362

363
template <DLDeviceType XPU, typename IdType>
364
CSRMatrix CSRSliceRows(CSRMatrix csr, NDArray rows) {
365
  CHECK_SAME_DTYPE(csr.indices, rows);
366
367
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
368
  const IdType* data = CSRHasData(csr)? static_cast<IdType*>(csr.data->data) : nullptr;
369
370
371
372
373
374
375
376
  const auto len = rows->shape[0];
  const IdType* rows_data = static_cast<IdType*>(rows->data);
  int64_t nnz = 0;

  CSRMatrix ret;
  ret.num_rows = len;
  ret.num_cols = csr.num_cols;
  ret.indptr = NDArray::Empty({len + 1}, csr.indptr->dtype, csr.indices->ctx);
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

  IdType* ret_indptr_data = static_cast<IdType*>(ret.indptr->data);
  ret_indptr_data[0] = 0;

  std::vector<IdType> sums;

  // Perform two-round parallel prefix sum using OpenMP
  #pragma omp parallel
  {
    int64_t tid = omp_get_thread_num();
    int64_t num_threads = omp_get_num_threads();

    #pragma omp single
    {
        sums.resize(num_threads + 1);
        sums[0] = 0;
    }

    int64_t sum = 0;

    // First round of parallel prefix sum. All threads perform local prefix sums.
    #pragma omp for schedule(static) nowait
    for (int64_t i = 0; i < len; ++i) {
      int64_t rid = rows_data[i];
      sum += indptr_data[rid + 1] - indptr_data[rid];
      ret_indptr_data[i + 1] = sum;
    }
    sums[tid + 1] = sum;
    #pragma omp barrier

    #pragma omp single
    {
      for (int64_t i = 1; i < num_threads; ++i)
        sums[i] += sums[i - 1];
    }

    int64_t offset = sums[tid];

    // Second round of parallel prefix sum. Update the local prefix sums.
    #pragma omp for schedule(static)
    for (int64_t i = 0; i < len; ++i)
      ret_indptr_data[i + 1] += offset;
  }

  // After the prefix sum, the last element of ret_indptr_data holds the
  // sum of all elements
  nnz = ret_indptr_data[len];

425
  ret.indices = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
426
427
  ret.data = NDArray::Empty({nnz}, csr.indptr->dtype, csr.indptr->ctx);
  ret.sorted = csr.sorted;
428
429

  IdType* ret_indices_data = static_cast<IdType*>(ret.indices->data);
430
  IdType* ret_data = static_cast<IdType*>(ret.data->data);
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

  parallel_for(0, len, [=](int64_t b, int64_t e) {
    for (auto i = b; i < e; ++i) {
      const IdType rid = rows_data[i];
      // note: zero is allowed
      std::copy(indices_data + indptr_data[rid], indices_data + indptr_data[rid + 1],
                ret_indices_data + ret_indptr_data[i]);
      if (data)
        std::copy(data + indptr_data[rid], data + indptr_data[rid + 1],
                  ret_data + ret_indptr_data[i]);
      else
        std::iota(ret_data + ret_indptr_data[i], ret_data + ret_indptr_data[i + 1],
                  indptr_data[rid]);
    }
  });
446
447
448
  return ret;
}

449
450
template CSRMatrix CSRSliceRows<kDLCPU, int32_t>(CSRMatrix , NDArray);
template CSRMatrix CSRSliceRows<kDLCPU, int64_t>(CSRMatrix , NDArray);
451
452
453

///////////////////////////// CSRSliceMatrix /////////////////////////////

454
template <DLDeviceType XPU, typename IdType>
455
456
457
458
459
CSRMatrix CSRSliceMatrix(CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols) {
  IdHashMap<IdType> hashmap(cols);
  const int64_t new_nrows = rows->shape[0];
  const int64_t new_ncols = cols->shape[0];
  const IdType* rows_data = static_cast<IdType*>(rows->data);
460
  const bool has_data = CSRHasData(csr);
461
462
463

  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
464
  const IdType* data = has_data? static_cast<IdType*>(csr.data->data) : nullptr;
465
466

  std::vector<IdType> sub_indptr, sub_indices;
467
  std::vector<IdType> sub_data;
468
469
470
471
472
473
474
475
476
477
478
479
  sub_indptr.resize(new_nrows + 1, 0);
  const IdType kInvalidId = new_ncols + 1;
  for (int64_t i = 0; i < new_nrows; ++i) {
    // NOTE: newi == i
    const IdType oldi = rows_data[i];
    CHECK(oldi >= 0 && oldi < csr.num_rows) << "Invalid row index: " << oldi;
    for (IdType p = indptr_data[oldi]; p < indptr_data[oldi + 1]; ++p) {
      const IdType oldj = indices_data[p];
      const IdType newj = hashmap.Map(oldj, kInvalidId);
      if (newj != kInvalidId) {
        ++sub_indptr[i];
        sub_indices.push_back(newj);
480
        sub_data.push_back(has_data? data[p] : p);
481
482
483
484
485
486
487
488
489
490
491
492
493
      }
    }
  }

  // cumsum sub_indptr
  for (int64_t i = 0, cumsum = 0; i < new_nrows; ++i) {
    const IdType temp = sub_indptr[i];
    sub_indptr[i] = cumsum;
    cumsum += temp;
  }
  sub_indptr[new_nrows] = sub_indices.size();

  const int64_t nnz = sub_data.size();
494
495
  NDArray sub_data_arr = NDArray::Empty({nnz}, csr.indptr->dtype, csr.indptr->ctx);
  IdType* ptr = static_cast<IdType*>(sub_data_arr->data);
496
497
  std::copy(sub_data.begin(), sub_data.end(), ptr);
  return CSRMatrix{new_nrows, new_ncols,
498
499
    NDArray::FromVector(sub_indptr, csr.indptr->ctx),
    NDArray::FromVector(sub_indices, csr.indptr->ctx),
500
501
502
    sub_data_arr};
}

503
template CSRMatrix CSRSliceMatrix<kDLCPU, int32_t>(
504
    CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols);
505
template CSRMatrix CSRSliceMatrix<kDLCPU, int64_t>(
506
507
    CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols);

Da Zheng's avatar
Da Zheng committed
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
///////////////////////////// CSRReorder /////////////////////////////

template <DLDeviceType XPU, typename IdType>
CSRMatrix CSRReorder(CSRMatrix csr, runtime::NDArray new_row_id_arr,
                     runtime::NDArray new_col_id_arr) {
  CHECK_SAME_DTYPE(csr.indices, new_row_id_arr);
  CHECK_SAME_DTYPE(csr.indices, new_col_id_arr);

  // Input CSR
  const IdType* in_indptr = static_cast<IdType*>(csr.indptr->data);
  const IdType* in_indices = static_cast<IdType*>(csr.indices->data);
  const IdType* in_data = static_cast<IdType*>(csr.data->data);
  int64_t num_rows = csr.num_rows;
  int64_t num_cols = csr.num_cols;
  int64_t nnz = csr.indices->shape[0];
  CHECK_EQ(nnz, in_indptr[num_rows]);
  CHECK_EQ(num_rows, new_row_id_arr->shape[0])
      << "The new row Id array needs to be the same as the number of rows of CSR";
  CHECK_EQ(num_cols, new_col_id_arr->shape[0])
      << "The new col Id array needs to be the same as the number of cols of CSR";

  // New row/col Ids.
  const IdType* new_row_ids = static_cast<IdType*>(new_row_id_arr->data);
  const IdType* new_col_ids = static_cast<IdType*>(new_col_id_arr->data);

  // Output CSR
  NDArray out_indptr_arr = NDArray::Empty({num_rows + 1}, csr.indptr->dtype, csr.indptr->ctx);
  NDArray out_indices_arr = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  NDArray out_data_arr = NDArray::Empty({nnz}, csr.data->dtype, csr.data->ctx);
  IdType *out_indptr = static_cast<IdType*>(out_indptr_arr->data);
  IdType *out_indices = static_cast<IdType*>(out_indices_arr->data);
  IdType *out_data = static_cast<IdType*>(out_data_arr->data);

  // Compute the length of rows for the new matrix.
  std::vector<IdType> new_row_lens(num_rows, -1);
543
544
545
546
547
548
  parallel_for(0, num_rows, [=, &new_row_lens](size_t b, size_t e) {
    for (auto i = b; i < e; ++i) {
      int64_t new_row_id = new_row_ids[i];
      new_row_lens[new_row_id] = in_indptr[i + 1] - in_indptr[i];
    }
  });
Da Zheng's avatar
Da Zheng committed
549
550
551
552
553
554
555
556
557
558
  // Compute the starting location of each row in the new matrix.
  out_indptr[0] = 0;
  // This is sequential. It should be pretty fast.
  for (int64_t i = 0; i < num_rows; i++) {
    CHECK_GE(new_row_lens[i], 0);
    out_indptr[i + 1] = out_indptr[i] + new_row_lens[i];
  }
  CHECK_EQ(out_indptr[num_rows], nnz);
  // Copy indieces and data with the new order.
  // Here I iterate rows in the order of the old matrix.
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
  parallel_for(0, num_rows, [=](size_t b, size_t e) {
    for (auto i = b; i < e; ++i) {
      const IdType *in_row = in_indices + in_indptr[i];
      const IdType *in_row_data = in_data + in_indptr[i];

      int64_t new_row_id = new_row_ids[i];
      IdType *out_row = out_indices + out_indptr[new_row_id];
      IdType *out_row_data = out_data + out_indptr[new_row_id];

      int64_t row_len = new_row_lens[new_row_id];
      // Here I iterate col indices in a row in the order of the old matrix.
      for (int64_t j = 0; j < row_len; j++) {
        out_row[j] = new_col_ids[in_row[j]];
        out_row_data[j] = in_row_data[j];
      }
      // TODO(zhengda) maybe we should sort the column indices.
Da Zheng's avatar
Da Zheng committed
575
    }
576
  });
Da Zheng's avatar
Da Zheng committed
577
578
579
580
581
582
583
584
585
  return CSRMatrix(num_rows, num_cols,
    out_indptr_arr, out_indices_arr, out_data_arr);
}

template CSRMatrix CSRReorder<kDLCPU, int64_t>(CSRMatrix csr, runtime::NDArray new_row_ids,
                                               runtime::NDArray new_col_ids);
template CSRMatrix CSRReorder<kDLCPU, int32_t>(CSRMatrix csr, runtime::NDArray new_row_ids,
                                               runtime::NDArray new_col_ids);

586
587
588
}  // namespace impl
}  // namespace aten
}  // namespace dgl