model_hetero.py 3.66 KB
Newer Older
Mufei Li's avatar
Mufei Li committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
"""This model shows an example of using dgl.metapath_reachable_graph on the original heterogeneous
graph.

Because the original HAN implementation only gives the preprocessed homogeneous graph, this model
could not reproduce the result in HAN as they did not provide the preprocessing code, and we
constructed another dataset from ACM with a different set of papers, connections, features and
labels.
"""

import torch
import torch.nn as nn
import torch.nn.functional as F

import dgl
from dgl.nn.pytorch import GATConv

class SemanticAttention(nn.Module):
    def __init__(self, in_size, hidden_size=128):
        super(SemanticAttention, self).__init__()

        self.project = nn.Sequential(
            nn.Linear(in_size, hidden_size),
            nn.Tanh(),
            nn.Linear(hidden_size, 1, bias=False)
        )

    def forward(self, z):
Mufei Li's avatar
Mufei Li committed
28
29
30
        w = self.project(z).mean(0)                    # (M, 1)
        beta = torch.softmax(w, dim=0)                 # (M, 1)
        beta = beta.expand((z.shape[0],) + beta.shape) # (N, M, 1)
Mufei Li's avatar
Mufei Li committed
31

Mufei Li's avatar
Mufei Li committed
32
        return (beta * z).sum(1)                       # (N, D * K)
Mufei Li's avatar
Mufei Li committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

class HANLayer(nn.Module):
    """
    HAN layer.

    Arguments
    ---------
    meta_paths : list of metapaths, each as a list of edge types
    in_size : input feature dimension
    out_size : output feature dimension
    layer_num_heads : number of attention heads
    dropout : Dropout probability

    Inputs
    ------
    g : DGLHeteroGraph
        The heterogeneous graph
    h : tensor
        Input features

    Outputs
    -------
    tensor
        The output feature
    """
    def __init__(self, meta_paths, in_size, out_size, layer_num_heads, dropout):
        super(HANLayer, self).__init__()

        # One GAT layer for each meta path based adjacency matrix
        self.gat_layers = nn.ModuleList()
        for i in range(len(meta_paths)):
            self.gat_layers.append(GATConv(in_size, out_size, layer_num_heads,
                                           dropout, dropout, activation=F.elu))
        self.semantic_attention = SemanticAttention(in_size=out_size * layer_num_heads)
        self.meta_paths = list(tuple(meta_path) for meta_path in meta_paths)

        self._cached_graph = None
        self._cached_coalesced_graph = {}

    def forward(self, g, h):
        semantic_embeddings = []

        if self._cached_graph is None or self._cached_graph is not g:
            self._cached_graph = g
            self._cached_coalesced_graph.clear()
            for meta_path in self.meta_paths:
                self._cached_coalesced_graph[meta_path] = dgl.metapath_reachable_graph(
                        g, meta_path)

        for i, meta_path in enumerate(self.meta_paths):
            new_g = self._cached_coalesced_graph[meta_path]
            semantic_embeddings.append(self.gat_layers[i](new_g, h).flatten(1))
        semantic_embeddings = torch.stack(semantic_embeddings, dim=1)                  # (N, M, D * K)

        return self.semantic_attention(semantic_embeddings)                            # (N, D * K)

class HAN(nn.Module):
    def __init__(self, meta_paths, in_size, hidden_size, out_size, num_heads, dropout):
        super(HAN, self).__init__()

        self.layers = nn.ModuleList()
        self.layers.append(HANLayer(meta_paths, in_size, hidden_size, num_heads[0], dropout))
        for l in range(1, len(num_heads)):
            self.layers.append(HANLayer(meta_paths, hidden_size * num_heads[l-1],
                                        hidden_size, num_heads[l], dropout))
        self.predict = nn.Linear(hidden_size * num_heads[-1], out_size)

    def forward(self, g, h):
        for gnn in self.layers:
            h = gnn(g, h)

        return self.predict(h)