3_message_passing.py 11.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
"""
Write your own GNN module
=========================

Sometimes, your model goes beyond simply stacking existing GNN modules.
For example, you would like to invent a new way of aggregating neighbor
information by considering node importance or edge weights.

By the end of this tutorial you will be able to

-  Understand DGL’s message passing APIs.
-  Implement GraphSAGE convolution module by your own.

This tutorial assumes that you already know :doc:`the basics of training a
GNN for node classification <1_introduction>`.

(Time estimate: 10 minutes)

"""

import dgl
import torch
import torch.nn as nn
import torch.nn.functional as F


######################################################################
# Message passing and GNNs
# ------------------------
# 
# DGL follows the *message passing paradigm* inspired by the Message
# Passing Neural Network proposed by `Gilmer et
# al. <https://arxiv.org/abs/1704.01212>`__ Essentially, they found many
# GNN models can fit into the following framework:
# 
# .. math::
# 
# 
#    m_{u\to v}^{(l)} = M^{(l)}\left(h_v^{(l-1)}, h_u^{(l-1)}, e_{u\to v}^{(l-1)}\right)
# 
# .. math::
# 
# 
#    m_{v}^{(l)} = \sum_{u\in\mathcal{N}(v)}m_{u\to v}^{(l)}
# 
# .. math::
# 
# 
#    h_v^{(l)} = U^{(l)}\left(h_v^{(l-1)}, m_v^{(l)}\right)
# 
# where DGL calls :math:`M^{(l)}` the *message function*, :math:`\sum` the
# *reduce function* and :math:`U^{(l)}` the *update function*. Note that
# :math:`\sum` here can represent any function and is not necessarily a
# summation.
# 


######################################################################
# For example, the `GraphSAGE convolution (Hamilton et al.,
# 2017) <https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf>`__
# takes the following mathematical form:
# 
# .. math::
# 
# 
#    h_{\mathcal{N}(v)}^k\leftarrow \text{Average}\{h_u^{k-1},\forall u\in\mathcal{N}(v)\}
# 
# .. math::
# 
# 
#    h_v^k\leftarrow \text{ReLU}\left(W^k\cdot \text{CONCAT}(h_v^{k-1}, h_{\mathcal{N}(v)}^k) \right)
# 
# You can see that message passing is directional: the message sent from
# one node :math:`u` to other node :math:`v` is not necessarily the same
# as the other message sent from node :math:`v` to node :math:`u` in the
# opposite direction.
# 
# Although DGL has builtin support of GraphSAGE via
79
# :class:`dgl.nn.SAGEConv <dgl.nn.pytorch.SAGEConv>`,
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# here is how you can implement GraphSAGE convolution in DGL by your own.
# 

import dgl.function as fn

class SAGEConv(nn.Module):
    """Graph convolution module used by the GraphSAGE model.
    
    Parameters
    ----------
    in_feat : int
        Input feature size.
    out_feat : int
        Output feature size.
    """
    def __init__(self, in_feat, out_feat):
        super(SAGEConv, self).__init__()
        # A linear submodule for projecting the input and neighbor feature to the output.
        self.linear = nn.Linear(in_feat * 2, out_feat)
    
    def forward(self, g, h):
        """Forward computation
        
        Parameters
        ----------
        g : Graph
            The input graph.
        h : Tensor
            The input node feature.
        """
        with g.local_scope():
            g.ndata['h'] = h
            # update_all is a message passing API.
            g.update_all(message_func=fn.copy_u('h', 'm'), reduce_func=fn.mean('m', 'h_N'))
            h_N = g.ndata['h_N']
            h_total = torch.cat([h, h_N], dim=1)
            return self.linear(h_total)


######################################################################
# The central piece in this code is the
121
# :func:`g.update_all <dgl.DGLGraph.update_all>`
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# function, which gathers and averages the neighbor features. There are
# three concepts here:
#
# * Message function ``fn.copy_u('h', 'm')`` that
#   copies the node feature under name ``'h'`` as *messages* sent to
#   neighbors.
#
# * Reduce function ``fn.mean('m', 'h_N')`` that averages
#   all the received messages under name ``'m'`` and saves the result as a
#   new node feature ``'h_N'``.
#
# * ``update_all`` tells DGL to trigger the
#   message and reduce functions for all the nodes and edges.
# 


######################################################################
# Afterwards, you can stack your own GraphSAGE convolution layers to form
# a multi-layer GraphSAGE network.
#

class Model(nn.Module):
    def __init__(self, in_feats, h_feats, num_classes):
        super(Model, self).__init__()
        self.conv1 = SAGEConv(in_feats, h_feats)
        self.conv2 = SAGEConv(h_feats, num_classes)
    
    def forward(self, g, in_feat):
        h = self.conv1(g, in_feat)
        h = F.relu(h)
        h = self.conv2(g, h)
        return h


######################################################################
# Training loop
# ~~~~~~~~~~~~~
# The following code for data loading and training loop is directly copied
# from the introduction tutorial.
# 

import dgl.data

dataset = dgl.data.CoraGraphDataset()
g = dataset[0]

def train(g, model):
    optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
    all_logits = []
    best_val_acc = 0
    best_test_acc = 0

    features = g.ndata['feat']
    labels = g.ndata['label']
    train_mask = g.ndata['train_mask']
    val_mask = g.ndata['val_mask']
    test_mask = g.ndata['test_mask']
    for e in range(200):
        # Forward
        logits = model(g, features)

        # Compute prediction
        pred = logits.argmax(1)

        # Compute loss
        # Note that we should only compute the losses of the nodes in the training set,
        # i.e. with train_mask 1.
        loss = F.cross_entropy(logits[train_mask], labels[train_mask])

        # Compute accuracy on training/validation/test
        train_acc = (pred[train_mask] == labels[train_mask]).float().mean()
        val_acc = (pred[val_mask] == labels[val_mask]).float().mean()
        test_acc = (pred[test_mask] == labels[test_mask]).float().mean()

        # Save the best validation accuracy and the corresponding test accuracy.
        if best_val_acc < val_acc:
            best_val_acc = val_acc
            best_test_acc = test_acc

        # Backward
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        all_logits.append(logits.detach())

        if e % 5 == 0:
            print('In epoch {}, loss: {:.3f}, val acc: {:.3f} (best {:.3f}), test acc: {:.3f} (best {:.3f})'.format(
                e, loss, val_acc, best_val_acc, test_acc, best_test_acc))

model = Model(g.ndata['feat'].shape[1], 16, dataset.num_classes)
train(g, model)


######################################################################
# More customization
# ------------------
# 
# In DGL, we provide many built-in message and reduce functions under the
# ``dgl.function`` package. You can find more details in :ref:`the API
# doc <apifunction>`.
# 


######################################################################
# These APIs allow one to quickly implement new graph convolution modules.
# For example, the following implements a new ``SAGEConv`` that aggregates
# neighbor representations using a weighted average. Note that ``edata``
# member can hold edge features which can also take part in message
# passing.
# 

class WeightedSAGEConv(nn.Module):
    """Graph convolution module used by the GraphSAGE model with edge weights.
    
    Parameters
    ----------
    in_feat : int
        Input feature size.
    out_feat : int
        Output feature size.
    """
    def __init__(self, in_feat, out_feat):
        super(WeightedSAGEConv, self).__init__()
        # A linear submodule for projecting the input and neighbor feature to the output.
        self.linear = nn.Linear(in_feat * 2, out_feat)
    
    def forward(self, g, h, w):
        """Forward computation
        
        Parameters
        ----------
        g : Graph
            The input graph.
        h : Tensor
            The input node feature.
        w : Tensor
            The edge weight.
        """
        with g.local_scope():
            g.ndata['h'] = h
            g.edata['w'] = w
            g.update_all(message_func=fn.u_mul_e('h', 'w', 'm'), reduce_func=fn.mean('m', 'h_N'))
            h_N = g.ndata['h_N']
            h_total = torch.cat([h, h_N], dim=1)
            return self.linear(h_total)


######################################################################
# Because the graph in this dataset does not have edge weights, we
# manually assign all edge weights to one in the ``forward()`` function of
# the model. You can replace it with your own edge weights.
# 

class Model(nn.Module):
    def __init__(self, in_feats, h_feats, num_classes):
        super(Model, self).__init__()
        self.conv1 = WeightedSAGEConv(in_feats, h_feats)
        self.conv2 = WeightedSAGEConv(h_feats, num_classes)
    
    def forward(self, g, in_feat):
282
        h = self.conv1(g, in_feat, torch.ones(g.num_edges(), 1).to(g.device))
283
        h = F.relu(h)
284
        h = self.conv2(g, h, torch.ones(g.num_edges(), 1).to(g.device))
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
        return h
    
model = Model(g.ndata['feat'].shape[1], 16, dataset.num_classes)
train(g, model)


######################################################################
# Even more customization by user-defined function
# ------------------------------------------------
# 
# DGL allows user-defined message and reduce function for the maximal
# expressiveness. Here is a user-defined message function that is
# equivalent to ``fn.u_mul_e('h', 'w', 'm')``.
# 

def u_mul_e_udf(edges):
    return {'m' : edges.src['h'] * edges.data['w']}


######################################################################
# ``edges`` has three members: ``src``, ``data`` and ``dst``, representing
# the source node feature, edge feature, and destination node feature for
# all edges.
# 


######################################################################
# You can also write your own reduce function. For example, the following
313
# is equivalent to the builtin ``fn.mean('m', 'h_N')`` function that averages
314
315
316
# the incoming messages:
# 

317
318
def mean_udf(nodes):
    return {'h_N': nodes.mailbox['m'].mean(1)}
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355


######################################################################
# In short, DGL will group the nodes by their in-degrees, and for each
# group DGL stacks the incoming messages along the second dimension. You 
# can then perform a reduction along the second dimension to aggregate
# messages.
# 
# For more details on customizing message and reduce function with
# user-defined function, please refer to the :ref:`API
# reference <apiudf>`.
# 


######################################################################
# Best practice of writing custom GNN modules
# -------------------------------------------
# 
# DGL recommends the following practice ranked by preference:
# 
# -  Use ``dgl.nn`` modules.
# -  Use ``dgl.nn.functional`` functions which contain lower-level complex
#    operations such as computing a softmax for each node over incoming
#    edges.
# -  Use ``update_all`` with builtin message and reduce functions.
# -  Use user-defined message or reduce functions.
# 


######################################################################
# What’s next?
# ------------
# 
# -  :ref:`Writing Efficient Message Passing
#    Code <guide-message-passing-efficient>`.
# 

356

357
# Thumbnail credits: Representation Learning on Networks, Jure Leskovec, WWW 2018
358
# sphinx_gallery_thumbnail_path = '_static/blitz_3_message_passing.png'