labor_sampling.cu 31 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*!
 *   Copyright (c) 2022, NVIDIA Corporation
 *   Copyright (c) 2022, GT-TDAlab (Muhammed Fatih Balin & Umit V. Catalyurek)
 *   All rights reserved.
 *
 *   Licensed under the Apache License, Version 2.0 (the "License");
 *   you may not use this file except in compliance with the License.
 *   You may obtain a copy of the License at
 *
 *       http://www.apache.org/licenses/LICENSE-2.0
 *
 *   Unless required by applicable law or agreed to in writing, software
 *   distributed under the License is distributed on an "AS IS" BASIS,
 *   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *   See the License for the specific language governing permissions and
 *   limitations under the License.
 *
18
19
 * @file array/cuda/labor_sampling.cu
 * @brief labor sampling
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
 */

#include <dgl/aten/coo.h>
#include <dgl/random.h>
#include <dgl/runtime/device_api.h>
#include <thrust/binary_search.h>
#include <thrust/copy.h>
#include <thrust/execution_policy.h>
#include <thrust/gather.h>
#include <thrust/iterator/constant_iterator.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/zip_iterator.h>
#include <thrust/shuffle.h>
#include <thrust/transform.h>
#include <thrust/zip_function.h>

#include <algorithm>
37
#include <cub/cub.cuh>  // NOLINT
38
39
40
41
42
43
#include <limits>
#include <numeric>
#include <type_traits>
#include <utility>

#include "../../array/cuda/utils.h"
44
#include "../../random/continuous_seed.h"
45
46
47
48
49
50
51
52
#include "../../runtime/cuda/cuda_common.h"
#include "./functor.cuh"
#include "./spmm.cuh"

namespace dgl {
namespace aten {
namespace impl {

53
54
using dgl::random::continuous_seed;

55
56
57
58
59
60
61
62
63
64
65
66
67
68
constexpr int BLOCK_SIZE = 128;
constexpr int CTA_SIZE = 128;
constexpr double eps = 0.0001;

namespace {

template <typename IdType>
struct TransformOp {
  const IdType* idx_coo;
  const IdType* rows;
  const IdType* indptr;
  const IdType* subindptr;
  const IdType* indices;
  const IdType* data_arr;
69
  bool is_pinned;
70
71
72
  __host__ __device__ auto operator()(IdType idx) {
    const auto in_row = idx_coo[idx];
    const auto row = rows[in_row];
73
74
    const auto in_idx = indptr[in_row] + idx - subindptr[in_row];
    const auto u = indices[is_pinned ? idx : in_idx];
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    const auto data = data_arr ? data_arr[in_idx] : in_idx;
    return thrust::make_tuple(row, u, data);
  }
};

template <
    typename IdType, typename FloatType, typename probs_t, typename A_t,
    typename B_t>
struct TransformOpImp {
  probs_t probs;
  A_t A;
  B_t B;
  const IdType* idx_coo;
  const IdType* rows;
  const FloatType* cs;
  const IdType* indptr;
  const IdType* subindptr;
  const IdType* indices;
  const IdType* data_arr;
94
  bool is_pinned;
95
96
97
98
99
  __host__ __device__ auto operator()(IdType idx) {
    const auto ps = probs[idx];
    const auto in_row = idx_coo[idx];
    const auto c = cs[in_row];
    const auto row = rows[in_row];
100
101
    const auto in_idx = indptr[in_row] + idx - subindptr[in_row];
    const auto u = indices[is_pinned ? idx : in_idx];
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    const auto w = A[in_idx];
    const auto w2 = B[in_idx];
    const auto data = data_arr ? data_arr[in_idx] : in_idx;
    return thrust::make_tuple(
        in_row, row, u, data, w / min((FloatType)1, c * w2 * ps));
  }
};

template <typename FloatType>
struct StencilOp {
  const FloatType* cs;
  template <typename IdType>
  __host__ __device__ auto operator()(
      IdType in_row, FloatType ps, FloatType rnd) {
    return rnd <= cs[in_row] * ps;
  }
};

template <typename IdType, typename FloatType, typename ps_t, typename A_t>
struct StencilOpFused {
122
  const continuous_seed seed;
123
124
125
126
127
128
129
130
  const IdType* idx_coo;
  const FloatType* cs;
  const ps_t probs;
  const A_t A;
  const IdType* subindptr;
  const IdType* indptr;
  const IdType* indices;
  const IdType* nids;
131
  bool is_pinned;
132
133
134
135
  __device__ auto operator()(IdType idx) {
    const auto in_row = idx_coo[idx];
    const auto ps = probs[idx];
    IdType rofs = idx - subindptr[in_row];
136
137
    const auto in_idx = indptr[in_row] + rofs;
    const auto u = indices[is_pinned ? idx : in_idx];
138
139
    const auto t = nids ? nids[u] : u;  // t in the paper
    // rolled random number r_t is a function of the random_seed and t
140
    const float rnd = seed.uniform(t);
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    return rnd <= cs[in_row] * A[in_idx] * ps;
  }
};

template <typename IdType, typename FloatType>
struct TransformOpMean {
  const IdType* ds;
  const FloatType* ws;
  __host__ __device__ auto operator()(IdType idx, FloatType ps) {
    return ps * ds[idx] / ws[idx];
  }
};

struct TransformOpMinWith1 {
  template <typename FloatType>
  __host__ __device__ auto operator()(FloatType x) {
    return min((FloatType)1, x);
  }
};

template <typename IdType>
struct IndptrFunc {
  const IdType* indptr;
164
165
166
167
  const IdType* in_deg;
  __host__ __device__ auto operator()(IdType row) {
    return indptr[row] + (in_deg ? in_deg[row] : 0);
  }
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
};

template <typename FloatType>
struct SquareFunc {
  __host__ __device__ auto operator()(FloatType x) {
    return thrust::make_tuple(x, x * x);
  }
};

struct TupleSum {
  template <typename T>
  __host__ __device__ T operator()(const T& a, const T& b) const {
    return thrust::make_tuple(
        thrust::get<0>(a) + thrust::get<0>(b),
        thrust::get<1>(a) + thrust::get<1>(b));
  }
};

template <typename IdType, typename FloatType>
struct DegreeFunc {
  const IdType num_picks;
  const IdType* rows;
  const IdType* indptr;
  IdType* in_deg;
192
  IdType* inrow_indptr;
193
194
195
  FloatType* cs;
  __host__ __device__ auto operator()(IdType tIdx) {
    const auto out_row = rows[tIdx];
196
197
    const auto indptr_val = indptr[out_row];
    const auto d = indptr[out_row + 1] - indptr_val;
198
    in_deg[tIdx] = d;
199
200
    inrow_indptr[tIdx] = indptr_val;
    cs[tIdx] = num_picks / (FloatType)d;
201
202
203
204
205
  }
};

template <typename IdType, typename FloatType>
__global__ void _CSRRowWiseOneHopExtractorKernel(
206
207
208
209
210
    const continuous_seed seed, const IdType hop_size,
    const IdType* const indptr, const IdType* const subindptr,
    const IdType* const indices, const IdType* const idx_coo,
    const IdType* const nids, const FloatType* const A, FloatType* const rands,
    IdType* const hop, FloatType* const A_l) {
211
212
213
214
215
216
  IdType tx = static_cast<IdType>(blockIdx.x) * blockDim.x + threadIdx.x;
  const int stride_x = gridDim.x * blockDim.x;

  while (tx < hop_size) {
    IdType rpos = idx_coo[tx];
    IdType rofs = tx - subindptr[rpos];
217
218
219
220
    const auto in_idx = indptr[rpos] + rofs;
    const auto not_pinned = indices != hop;
    const auto u = indices[not_pinned ? in_idx : tx];
    if (not_pinned) hop[tx] = u;
221
    const auto t = nids ? nids[u] : u;
222
    if (A) A_l[tx] = A[in_idx];
223
224
    // rolled random number r_t is a function of the random_seed and t
    rands[tx] = (FloatType)seed.uniform(t);
225
226
227
228
    tx += stride_x;
  }
}

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
constexpr int CACHE_LINE_SIZE = 128;

template <typename IdType>
struct AlignmentFunc {
  static_assert(CACHE_LINE_SIZE % sizeof(IdType) == 0);
  const IdType* in_deg;
  const int64_t* perm;
  IdType num_rows;
  __host__ __device__ auto operator()(IdType row) {
    constexpr int num_elements = CACHE_LINE_SIZE / sizeof(IdType);
    return in_deg[perm ? perm[row % num_rows] : row] + num_elements - 1;
  }
};

template <typename IdType>
__global__ void _CSRRowWiseOneHopExtractorAlignedKernel(
    const IdType hop_size, const IdType num_rows, const IdType* const indptr,
    const IdType* const subindptr, const IdType* const subindptr_aligned,
    const IdType* const indices, IdType* const hop, const int64_t* const perm) {
  IdType tx = static_cast<IdType>(blockIdx.x) * blockDim.x + threadIdx.x;
  const int stride_x = gridDim.x * blockDim.x;

  while (tx < hop_size) {
    const IdType rpos_ =
        dgl::cuda::_UpperBound(subindptr_aligned, num_rows, tx) - 1;
    const IdType rpos = perm ? perm[rpos_] : rpos_;
    const auto out_row = subindptr[rpos];
    const auto d = subindptr[rpos + 1] - out_row;
    const int offset =
        ((uint64_t)(indices + indptr[rpos] - subindptr_aligned[rpos_]) %
         CACHE_LINE_SIZE) /
        sizeof(IdType);
    const IdType rofs = tx - subindptr_aligned[rpos_] - offset;
    if (rofs >= 0 && rofs < d) {
      const auto in_idx = indptr[rpos] + rofs;
      assert((uint64_t)(indices + in_idx - tx) % CACHE_LINE_SIZE == 0);
      const auto u = indices[in_idx];
      hop[out_row + rofs] = u;
    }
    tx += stride_x;
  }
}

272
273
template <typename IdType, typename FloatType, int BLOCK_CTAS, int TILE_SIZE>
__global__ void _CSRRowWiseLayerSampleDegreeKernel(
274
275
    const IdType num_picks, const IdType num_rows, FloatType* const cs,
    const FloatType* const ds, const FloatType* const d2s,
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
    const IdType* const indptr, const FloatType* const probs,
    const FloatType* const A, const IdType* const subindptr) {
  typedef cub::BlockReduce<FloatType, BLOCK_SIZE> BlockReduce;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  __shared__ FloatType var_1_bcast[BLOCK_CTAS];

  // we assign one warp per row
  assert(blockDim.x == CTA_SIZE);
  assert(blockDim.y == BLOCK_CTAS);

  IdType out_row = blockIdx.x * TILE_SIZE + threadIdx.y;
  const auto last_row =
      min(static_cast<IdType>(blockIdx.x + 1) * TILE_SIZE, num_rows);

  constexpr FloatType ONE = 1;

  while (out_row < last_row) {
293
    const auto in_row_start = indptr[out_row];
294
295
    const auto out_row_start = subindptr[out_row];

296
    const IdType degree = subindptr[out_row + 1] - out_row_start;
297
298
299
300
301

    if (degree > 0) {
      // stands for k in in arXiv:2210.13339, i.e. fanout
      const auto k = min(num_picks, degree);
      // slightly better than NS
302
      const FloatType d_ = ds ? ds[out_row] : degree;
303
304
      // stands for right handside of Equation (22) in arXiv:2210.13339
      FloatType var_target =
305
          d_ * d_ / k + (ds ? d2s[out_row] - d_ * d_ / degree : 0);
306
307
308
309
310
311
312
313
314
315
316

      auto c = cs[out_row];
      const int num_valid = min(degree, (IdType)CTA_SIZE);
      // stands for left handside of Equation (22) in arXiv:2210.13339
      FloatType var_1;
      do {
        var_1 = 0;
        if (A) {
          for (int idx = threadIdx.x; idx < degree; idx += CTA_SIZE) {
            const auto w = A[in_row_start + idx];
            const auto ps = probs ? probs[out_row_start + idx] : w;
317
            var_1 += w > 0 ? w * w / min(ONE, c * ps) : 0;
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
          }
        } else {
          for (int idx = threadIdx.x; idx < degree; idx += CTA_SIZE) {
            const auto ps = probs[out_row_start + idx];
            var_1 += 1 / min(ONE, c * ps);
          }
        }
        var_1 = BlockReduce(temp_storage).Sum(var_1, num_valid);
        if (threadIdx.x == 0) var_1_bcast[threadIdx.y] = var_1;
        __syncthreads();
        var_1 = var_1_bcast[threadIdx.y];

        c *= var_1 / var_target;
      } while (min(var_1, var_target) / max(var_1, var_target) < 1 - eps);

      if (threadIdx.x == 0) cs[out_row] = c;
    }

    out_row += BLOCK_CTAS;
  }
}

}  // namespace

342
343
344
345
346
347
348
349
template <typename IdType>
int log_size(const IdType size) {
  if (size <= 0) return 0;
  for (int i = 0; i < static_cast<int>(sizeof(IdType)) * 8; i++)
    if (((size - 1) >> i) == 0) return i;
  return sizeof(IdType) * 8;
}

350
351
352
template <typename IdType, typename FloatType, typename exec_policy_t>
void compute_importance_sampling_probabilities(
    CSRMatrix mat, const IdType hop_size, cudaStream_t stream,
353
    const continuous_seed seed, const IdType num_rows, const IdType* indptr,
354
355
    const IdType* subindptr, const IdType* indices, IdArray idx_coo_arr,
    const IdType* nids,
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
    FloatArray cs_arr,  // holds the computed cs values, has size num_rows
    const bool weighted, const FloatType* A, const FloatType* ds,
    const FloatType* d2s, const IdType num_picks, DGLContext ctx,
    const runtime::CUDAWorkspaceAllocator& allocator,
    const exec_policy_t& exec_policy, const int importance_sampling,
    IdType* hop_1,  // holds the contiguous one-hop neighborhood, has size |E|
    FloatType* rands,  // holds the rolled random numbers r_t for each edge, has
                       // size |E|
    FloatType* probs_found) {  // holds the computed pi_t values for each edge,
                               // has size |E|
  auto device = runtime::DeviceAPI::Get(ctx);
  auto idx_coo = idx_coo_arr.Ptr<IdType>();
  auto cs = cs_arr.Ptr<FloatType>();
  FloatArray A_l_arr = weighted
                           ? NewFloatArray(hop_size, ctx, sizeof(FloatType) * 8)
                           : NullArray();
  auto A_l = A_l_arr.Ptr<FloatType>();

374
  const int max_log_num_vertices = log_size(mat.num_cols);
375
376
377
378
379
380

  {  // extracts the onehop neighborhood cols to a contiguous range into hop_1
    const dim3 block(BLOCK_SIZE);
    const dim3 grid((hop_size + BLOCK_SIZE - 1) / BLOCK_SIZE);
    CUDA_KERNEL_CALL(
        (_CSRRowWiseOneHopExtractorKernel<IdType, FloatType>), grid, block, 0,
381
382
        stream, seed, hop_size, indptr, subindptr, indices, idx_coo, nids,
        weighted ? A : nullptr, rands, hop_1, A_l);
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
  }
  int64_t hop_uniq_size = 0;
  IdArray hop_new_arr = NewIdArray(hop_size, ctx, sizeof(IdType) * 8);
  auto hop_new = hop_new_arr.Ptr<IdType>();
  auto hop_unique = allocator.alloc_unique<IdType>(hop_size);
  // After this block, hop_unique holds the unique set of one-hop neighborhood
  // and hop_new holds the relabeled hop_1, idx_coo already holds relabeled
  // destination. hop_unique[hop_new] == hop_1 holds
  {
    auto hop_2 = allocator.alloc_unique<IdType>(hop_size);
    auto hop_3 = allocator.alloc_unique<IdType>(hop_size);

    device->CopyDataFromTo(
        hop_1, 0, hop_2.get(), 0, sizeof(IdType) * hop_size, ctx, ctx,
        mat.indptr->dtype);

    cub::DoubleBuffer<IdType> hop_b(hop_2.get(), hop_3.get());

    {
      std::size_t temp_storage_bytes = 0;
      CUDA_CALL(cub::DeviceRadixSort::SortKeys(
          nullptr, temp_storage_bytes, hop_b, hop_size, 0, max_log_num_vertices,
          stream));

      auto temp = allocator.alloc_unique<char>(temp_storage_bytes);

      CUDA_CALL(cub::DeviceRadixSort::SortKeys(
          temp.get(), temp_storage_bytes, hop_b, hop_size, 0,
          max_log_num_vertices, stream));
    }

    auto hop_counts = allocator.alloc_unique<IdType>(hop_size + 1);
    auto hop_unique_size = allocator.alloc_unique<int64_t>(1);

    {
      std::size_t temp_storage_bytes = 0;
      CUDA_CALL(cub::DeviceRunLengthEncode::Encode(
          nullptr, temp_storage_bytes, hop_b.Current(), hop_unique.get(),
          hop_counts.get(), hop_unique_size.get(), hop_size, stream));

      auto temp = allocator.alloc_unique<char>(temp_storage_bytes);

      CUDA_CALL(cub::DeviceRunLengthEncode::Encode(
          temp.get(), temp_storage_bytes, hop_b.Current(), hop_unique.get(),
          hop_counts.get(), hop_unique_size.get(), hop_size, stream));

      device->CopyDataFromTo(
          hop_unique_size.get(), 0, &hop_uniq_size, 0, sizeof(hop_uniq_size),
          ctx, DGLContext{kDGLCPU, 0}, mat.indptr->dtype);
    }

    thrust::lower_bound(
        exec_policy, hop_unique.get(), hop_unique.get() + hop_uniq_size, hop_1,
        hop_1 + hop_size, hop_new);
  }

  // @todo Consider creating a CSC because the SpMV will be done multiple times.
  COOMatrix rmat(
      num_rows, hop_uniq_size, idx_coo_arr, hop_new_arr, NullArray(), true,
      mat.sorted);

  BcastOff bcast_off;
  bcast_off.use_bcast = false;
  bcast_off.out_len = 1;
  bcast_off.lhs_len = 1;
  bcast_off.rhs_len = 1;

  FloatArray probs_arr =
      NewFloatArray(hop_uniq_size, ctx, sizeof(FloatType) * 8);
  auto probs_1 = probs_arr.Ptr<FloatType>();
  FloatArray probs_arr_2 =
      NewFloatArray(hop_uniq_size, ctx, sizeof(FloatType) * 8);
  auto probs = probs_arr_2.Ptr<FloatType>();
  auto arg_u = NewIdArray(hop_uniq_size, ctx, sizeof(IdType) * 8);
  auto arg_e = NewIdArray(hop_size, ctx, sizeof(IdType) * 8);

  double prev_ex_nodes = hop_uniq_size;

  for (int iters = 0; iters < importance_sampling || importance_sampling < 0;
       iters++) {
    if (weighted && iters == 0) {
      cuda::SpMMCoo<
          IdType, FloatType, cuda::binary::Mul<FloatType>,
          cuda::reduce::Max<IdType, FloatType, true>>(
          bcast_off, rmat, cs_arr, A_l_arr, probs_arr_2, arg_u, arg_e);
    } else {
      cuda::SpMMCoo<
          IdType, FloatType, cuda::binary::CopyLhs<FloatType>,
          cuda::reduce::Max<IdType, FloatType, true>>(
          bcast_off, rmat, cs_arr, NullArray(), iters ? probs_arr : probs_arr_2,
          arg_u, arg_e);
    }

    if (iters)
      thrust::transform(
          exec_policy, probs_1, probs_1 + hop_uniq_size, probs, probs,
          thrust::multiplies<FloatType>{});

    thrust::gather(
        exec_policy, hop_new, hop_new + hop_size, probs, probs_found);

    {
      constexpr int BLOCK_CTAS = BLOCK_SIZE / CTA_SIZE;
      // the number of rows each thread block will cover
      constexpr int TILE_SIZE = BLOCK_CTAS;
      const dim3 block(CTA_SIZE, BLOCK_CTAS);
      const dim3 grid((num_rows + TILE_SIZE - 1) / TILE_SIZE);
      CUDA_KERNEL_CALL(
          (_CSRRowWiseLayerSampleDegreeKernel<
              IdType, FloatType, BLOCK_CTAS, TILE_SIZE>),
493
          grid, block, 0, stream, (IdType)num_picks, num_rows, cs,
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
          weighted ? ds : nullptr, weighted ? d2s : nullptr, indptr,
          probs_found, A, subindptr);
    }

    {
      auto probs_min_1 =
          thrust::make_transform_iterator(probs, TransformOpMinWith1{});
      const double cur_ex_nodes = thrust::reduce(
          exec_policy, probs_min_1, probs_min_1 + hop_uniq_size, 0.0);
      if (cur_ex_nodes / prev_ex_nodes >= 1 - eps) break;
      prev_ex_nodes = cur_ex_nodes;
    }
  }
}

/////////////////////////////// CSR ///////////////////////////////

template <DGLDeviceType XPU, typename IdType, typename FloatType>
std::pair<COOMatrix, FloatArray> CSRLaborSampling(
    CSRMatrix mat, IdArray rows_arr, const int64_t num_picks,
    FloatArray prob_arr, const int importance_sampling, IdArray random_seed_arr,
515
    float seed2_contribution, IdArray NIDs) {
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
  const bool weighted = !IsNullArray(prob_arr);

  const auto& ctx = rows_arr->ctx;

  runtime::CUDAWorkspaceAllocator allocator(ctx);

  const auto stream = runtime::getCurrentCUDAStream();
  const auto exec_policy = thrust::cuda::par_nosync(allocator).on(stream);

  auto device = runtime::DeviceAPI::Get(ctx);

  const IdType num_rows = rows_arr->shape[0];
  IdType* const rows = rows_arr.Ptr<IdType>();
  IdType* const nids = IsNullArray(NIDs) ? nullptr : NIDs.Ptr<IdType>();
  FloatType* const A = prob_arr.Ptr<FloatType>();

532
533
  IdType* const indptr_ = mat.indptr.Ptr<IdType>();
  IdType* const indices_ = mat.indices.Ptr<IdType>();
534
535
  IdType* const data = CSRHasData(mat) ? mat.data.Ptr<IdType>() : nullptr;

536
537
  // Read indptr only once in case it is pinned and access is slow.
  auto indptr = allocator.alloc_unique<IdType>(num_rows);
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
  // compute in-degrees
  auto in_deg = allocator.alloc_unique<IdType>(num_rows + 1);
  // cs stands for c_s in arXiv:2210.13339
  FloatArray cs_arr = NewFloatArray(num_rows, ctx, sizeof(FloatType) * 8);
  auto cs = cs_arr.Ptr<FloatType>();
  // ds stands for A_{*s} in arXiv:2210.13339
  FloatArray ds_arr = weighted
                          ? NewFloatArray(num_rows, ctx, sizeof(FloatType) * 8)
                          : NullArray();
  auto ds = ds_arr.Ptr<FloatType>();
  // d2s stands for (A^2)_{*s} in arXiv:2210.13339, ^2 is elementwise.
  FloatArray d2s_arr = weighted
                           ? NewFloatArray(num_rows, ctx, sizeof(FloatType) * 8)
                           : NullArray();
  auto d2s = d2s_arr.Ptr<FloatType>();

554
555
556
557
558
559
  thrust::counting_iterator<IdType> iota(0);
  thrust::for_each(
      exec_policy, iota, iota + num_rows,
      DegreeFunc<IdType, FloatType>{
          (IdType)num_picks, rows, indptr_, in_deg.get(), indptr.get(), cs});

560
  if (weighted) {
561
562
563
564
    auto b_offsets = thrust::make_transform_iterator(
        iota, IndptrFunc<IdType>{indptr.get(), nullptr});
    auto e_offsets = thrust::make_transform_iterator(
        iota, IndptrFunc<IdType>{indptr.get(), in_deg.get()});
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608

    auto A_A2 = thrust::make_transform_iterator(A, SquareFunc<FloatType>{});
    auto ds_d2s = thrust::make_zip_iterator(ds, d2s);

    size_t prefix_temp_size = 0;
    CUDA_CALL(cub::DeviceSegmentedReduce::Reduce(
        nullptr, prefix_temp_size, A_A2, ds_d2s, num_rows, b_offsets, e_offsets,
        TupleSum{}, thrust::make_tuple((FloatType)0, (FloatType)0), stream));
    auto temp = allocator.alloc_unique<char>(prefix_temp_size);
    CUDA_CALL(cub::DeviceSegmentedReduce::Reduce(
        temp.get(), prefix_temp_size, A_A2, ds_d2s, num_rows, b_offsets,
        e_offsets, TupleSum{}, thrust::make_tuple((FloatType)0, (FloatType)0),
        stream));
  }

  // fill subindptr
  IdArray subindptr_arr = NewIdArray(num_rows + 1, ctx, sizeof(IdType) * 8);
  auto subindptr = subindptr_arr.Ptr<IdType>();

  IdType hop_size;
  {
    size_t prefix_temp_size = 0;
    CUDA_CALL(cub::DeviceScan::ExclusiveSum(
        nullptr, prefix_temp_size, in_deg.get(), subindptr, num_rows + 1,
        stream));
    auto temp = allocator.alloc_unique<char>(prefix_temp_size);
    CUDA_CALL(cub::DeviceScan::ExclusiveSum(
        temp.get(), prefix_temp_size, in_deg.get(), subindptr, num_rows + 1,
        stream));

    device->CopyDataFromTo(
        subindptr, num_rows * sizeof(hop_size), &hop_size, 0, sizeof(hop_size),
        ctx, DGLContext{kDGLCPU, 0}, mat.indptr->dtype);
  }
  IdArray hop_arr = NewIdArray(hop_size, ctx, sizeof(IdType) * 8);
  CSRMatrix smat(
      num_rows, mat.num_cols, subindptr_arr, hop_arr, NullArray(), mat.sorted);
  // @todo Consider fusing CSRToCOO into StencilOpFused kernel
  auto smatcoo = CSRToCOO(smat, false);

  auto idx_coo_arr = smatcoo.row;
  auto idx_coo = idx_coo_arr.Ptr<IdType>();

  auto hop_1 = hop_arr.Ptr<IdType>();
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
  const bool is_pinned = mat.indices.IsPinned();
  if (is_pinned) {
    const auto res = Sort(rows_arr, log_size(mat.num_rows));
    const int64_t* perm = static_cast<int64_t*>(res.second->data);

    IdType hop_size;  // Shadows the original one as this is temporary
    auto subindptr_aligned = allocator.alloc_unique<IdType>(num_rows + 1);
    {
      auto modified_in_deg = thrust::make_transform_iterator(
          iota, AlignmentFunc<IdType>{in_deg.get(), perm, num_rows});
      size_t prefix_temp_size = 0;
      CUDA_CALL(cub::DeviceScan::ExclusiveSum(
          nullptr, prefix_temp_size, modified_in_deg, subindptr_aligned.get(),
          num_rows + 1, stream));
      auto temp = allocator.alloc_unique<char>(prefix_temp_size);
      CUDA_CALL(cub::DeviceScan::ExclusiveSum(
          temp.get(), prefix_temp_size, modified_in_deg,
          subindptr_aligned.get(), num_rows + 1, stream));

      device->CopyDataFromTo(
          subindptr_aligned.get(), num_rows * sizeof(hop_size), &hop_size, 0,
          sizeof(hop_size), ctx, DGLContext{kDGLCPU, 0}, mat.indptr->dtype);
    }
    const dim3 block(BLOCK_SIZE);
    const dim3 grid((hop_size + BLOCK_SIZE - 1) / BLOCK_SIZE);
    CUDA_KERNEL_CALL(
        (_CSRRowWiseOneHopExtractorAlignedKernel<IdType>), grid, block, 0,
        stream, hop_size, num_rows, indptr.get(), subindptr,
        subindptr_aligned.get(), indices_, hop_1, perm);
  }
  const auto indices = is_pinned ? hop_1 : indices_;

641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
  auto rands =
      allocator.alloc_unique<FloatType>(importance_sampling ? hop_size : 1);
  auto probs_found =
      allocator.alloc_unique<FloatType>(importance_sampling ? hop_size : 1);

  if (weighted) {
    // Recompute c for weighted graphs.
    constexpr int BLOCK_CTAS = BLOCK_SIZE / CTA_SIZE;
    // the number of rows each thread block will cover
    constexpr int TILE_SIZE = BLOCK_CTAS;
    const dim3 block(CTA_SIZE, BLOCK_CTAS);
    const dim3 grid((num_rows + TILE_SIZE - 1) / TILE_SIZE);
    CUDA_KERNEL_CALL(
        (_CSRRowWiseLayerSampleDegreeKernel<
            IdType, FloatType, BLOCK_CTAS, TILE_SIZE>),
656
657
        grid, block, 0, stream, (IdType)num_picks, num_rows, cs, ds, d2s,
        indptr.get(), nullptr, A, subindptr);
658
659
  }

660
  const continuous_seed random_seed =
661
      IsNullArray(random_seed_arr)
662
663
          ? continuous_seed(RandomEngine::ThreadLocal()->RandInt(1000000000))
          : continuous_seed(random_seed_arr, seed2_contribution);
664
665
666
667

  if (importance_sampling)
    compute_importance_sampling_probabilities<
        IdType, FloatType, decltype(exec_policy)>(
668
        mat, hop_size, stream, random_seed, num_rows, indptr.get(), subindptr,
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
        indices, idx_coo_arr, nids, cs_arr, weighted, A, ds, d2s,
        (IdType)num_picks, ctx, allocator, exec_policy, importance_sampling,
        hop_1, rands.get(), probs_found.get());

  IdArray picked_row = NewIdArray(hop_size, ctx, sizeof(IdType) * 8);
  IdArray picked_col = NewIdArray(hop_size, ctx, sizeof(IdType) * 8);
  IdArray picked_idx = NewIdArray(hop_size, ctx, sizeof(IdType) * 8);
  FloatArray picked_imp =
      importance_sampling || weighted
          ? NewFloatArray(hop_size, ctx, sizeof(FloatType) * 8)
          : NullArray();

  IdType* const picked_row_data = picked_row.Ptr<IdType>();
  IdType* const picked_col_data = picked_col.Ptr<IdType>();
  IdType* const picked_idx_data = picked_idx.Ptr<IdType>();
  FloatType* const picked_imp_data = picked_imp.Ptr<FloatType>();

  auto picked_inrow = allocator.alloc_unique<IdType>(
      importance_sampling || weighted ? hop_size : 1);

  // Sample edges here
  IdType num_edges;
  {
    thrust::constant_iterator<FloatType> one(1);
    if (importance_sampling) {
      auto output = thrust::make_zip_iterator(
          picked_inrow.get(), picked_row_data, picked_col_data, picked_idx_data,
          picked_imp_data);
      if (weighted) {
        auto transformed_output = thrust::make_transform_output_iterator(
            output,
            TransformOpImp<
                IdType, FloatType, FloatType*, FloatType*, decltype(one)>{
702
703
                probs_found.get(), A, one, idx_coo, rows, cs, indptr.get(),
                subindptr, indices, data, is_pinned});
704
705
706
707
708
709
710
711
712
713
714
715
        auto stencil =
            thrust::make_zip_iterator(idx_coo, probs_found.get(), rands.get());
        num_edges =
            thrust::copy_if(
                exec_policy, iota, iota + hop_size, stencil, transformed_output,
                thrust::make_zip_function(StencilOp<FloatType>{cs})) -
            transformed_output;
      } else {
        auto transformed_output = thrust::make_transform_output_iterator(
            output,
            TransformOpImp<
                IdType, FloatType, FloatType*, decltype(one), decltype(one)>{
716
717
                probs_found.get(), one, one, idx_coo, rows, cs, indptr.get(),
                subindptr, indices, data, is_pinned});
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
        auto stencil =
            thrust::make_zip_iterator(idx_coo, probs_found.get(), rands.get());
        num_edges =
            thrust::copy_if(
                exec_policy, iota, iota + hop_size, stencil, transformed_output,
                thrust::make_zip_function(StencilOp<FloatType>{cs})) -
            transformed_output;
      }
    } else {
      if (weighted) {
        auto output = thrust::make_zip_iterator(
            picked_inrow.get(), picked_row_data, picked_col_data,
            picked_idx_data, picked_imp_data);
        auto transformed_output = thrust::make_transform_output_iterator(
            output,
            TransformOpImp<
                IdType, FloatType, decltype(one), FloatType*, FloatType*>{
735
736
                one, A, A, idx_coo, rows, cs, indptr.get(), subindptr, indices,
                data, is_pinned});
737
738
        const auto pred =
            StencilOpFused<IdType, FloatType, decltype(one), FloatType*>{
739
740
                random_seed, idx_coo,      cs,      one,  A,
                subindptr,   indptr.get(), indices, nids, is_pinned};
741
742
743
744
745
746
747
748
749
        num_edges = thrust::copy_if(
                        exec_policy, iota, iota + hop_size, iota,
                        transformed_output, pred) -
                    transformed_output;
      } else {
        auto output = thrust::make_zip_iterator(
            picked_row_data, picked_col_data, picked_idx_data);
        auto transformed_output = thrust::make_transform_output_iterator(
            output, TransformOp<IdType>{
750
751
                        idx_coo, rows, indptr.get(), subindptr, indices, data,
                        is_pinned});
752
753
        const auto pred =
            StencilOpFused<IdType, FloatType, decltype(one), decltype(one)>{
754
755
                random_seed, idx_coo,      cs,      one,  one,
                subindptr,   indptr.get(), indices, nids, is_pinned};
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
        num_edges = thrust::copy_if(
                        exec_policy, iota, iota + hop_size, iota,
                        transformed_output, pred) -
                    transformed_output;
      }
    }
  }

  // Normalize edge weights here
  if (importance_sampling || weighted) {
    thrust::constant_iterator<IdType> one(1);
    // contains degree information
    auto ds = allocator.alloc_unique<IdType>(num_rows);
    // contains sum of edge weights
    auto ws = allocator.alloc_unique<FloatType>(num_rows);
    // contains degree information only for vertices with nonzero degree
    auto ds_2 = allocator.alloc_unique<IdType>(num_rows);
    // contains sum of edge weights only for vertices with nonzero degree
    auto ws_2 = allocator.alloc_unique<FloatType>(num_rows);
    auto output_ = thrust::make_zip_iterator(ds.get(), ws.get());
    // contains row ids only for vertices with nonzero degree
    auto keys = allocator.alloc_unique<IdType>(num_rows);
    auto input = thrust::make_zip_iterator(one, picked_imp_data);
    auto new_end = thrust::reduce_by_key(
        exec_policy, picked_inrow.get(), picked_inrow.get() + num_edges, input,
        keys.get(), output_, thrust::equal_to<IdType>{}, TupleSum{});
    {
      thrust::constant_iterator<IdType> zero_int(0);
      thrust::constant_iterator<FloatType> zero_float(0);
      auto input = thrust::make_zip_iterator(zero_int, zero_float);
      auto output = thrust::make_zip_iterator(ds_2.get(), ws_2.get());
      thrust::copy(exec_policy, input, input + num_rows, output);
      {
        const auto num_rows_2 = new_end.first - keys.get();
        thrust::scatter(
            exec_policy, output_, output_ + num_rows_2, keys.get(), output);
      }
    }
    {
      auto input =
          thrust::make_zip_iterator(picked_inrow.get(), picked_imp_data);
      auto transformed_input = thrust::make_transform_iterator(
          input, thrust::make_zip_function(TransformOpMean<IdType, FloatType>{
                     ds_2.get(), ws_2.get()}));
      thrust::copy(
          exec_policy, transformed_input, transformed_input + num_edges,
          picked_imp_data);
    }
  }

  picked_row = picked_row.CreateView({num_edges}, picked_row->dtype);
  picked_col = picked_col.CreateView({num_edges}, picked_col->dtype);
  picked_idx = picked_idx.CreateView({num_edges}, picked_idx->dtype);
  if (importance_sampling || weighted)
    picked_imp = picked_imp.CreateView({num_edges}, picked_imp->dtype);

  return std::make_pair(
      COOMatrix(mat.num_rows, mat.num_cols, picked_row, picked_col, picked_idx),
      picked_imp);
}

template std::pair<COOMatrix, FloatArray>
CSRLaborSampling<kDGLCUDA, int32_t, float>(
819
    CSRMatrix, IdArray, int64_t, FloatArray, int, IdArray, float, IdArray);
820
821
template std::pair<COOMatrix, FloatArray>
CSRLaborSampling<kDGLCUDA, int64_t, float>(
822
    CSRMatrix, IdArray, int64_t, FloatArray, int, IdArray, float, IdArray);
823
824
template std::pair<COOMatrix, FloatArray>
CSRLaborSampling<kDGLCUDA, int32_t, double>(
825
    CSRMatrix, IdArray, int64_t, FloatArray, int, IdArray, float, IdArray);
826
827
template std::pair<COOMatrix, FloatArray>
CSRLaborSampling<kDGLCUDA, int64_t, double>(
828
    CSRMatrix, IdArray, int64_t, FloatArray, int, IdArray, float, IdArray);
829
830
831
832

}  // namespace impl
}  // namespace aten
}  // namespace dgl