README.md 1.59 KB
Newer Older
Linfang He's avatar
Linfang He committed
1
2
3
4
5
6
7
8
9
10
Representation Learning for Attributed Multiplex Heterogeneous Network (GANTE)
============

- Paper link: [https://arxiv.org/abs/1905.01669](https://arxiv.org/abs/1905.01669)
- Author's code repo: [https://github.com/THUDM/GATNE](https://github.com/THUDM/GATNE). Note that only GATNE-T is implemented here.

Requirements
------------
- requirements

Mufei Li's avatar
Mufei Li committed
11
12
13
```bash
pip install -r requirements.txt
```
Linfang He's avatar
Linfang He committed
14
15
16
17

Datasets
--------

Mufei Li's avatar
Mufei Li committed
18
19
20
21
22
23
24
25
26
27
28
To prepare the datasets:
1. ```bash
   mkdir data
   cd data
   ```
2. Download datasets from the following links:
    - example: https://s3.us-west-2.amazonaws.com/dgl-data/dataset/recsys/GATNE/example.zip
    - amazon: https://s3.us-west-2.amazonaws.com/dgl-data/dataset/recsys/GATNE/amazon.zip
    - youtube: https://s3.us-west-2.amazonaws.com/dgl-data/dataset/recsys/GATNE/youtube.zip
    - twitter: https://s3.us-west-2.amazonaws.com/dgl-data/dataset/recsys/GATNE/twitter.zip
3. Unzip the datasets
Linfang He's avatar
Linfang He committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Training
--------

Run with following (available dataset: "example", "youtube", "amazon")
```bash
python src/main.py --input data/example
```

To run on "twitter" dataset, use
```bash
python src/main.py --input data/twitter --eval-type 1
```

Results
-------
All the results match the [official code](https://github.com/THUDM/GATNE/blob/master/src/main_pytorch.py) with the same hyper parameter values, including twiiter dataset (auc, pr, f1 is 76.29, 76.17, 69.34, respectively).

|          |  auc   |   pr  |  f1   |
|  ------  |  ----  |  ---  | ----- |
|  amazon  |  96.88 | 96.31 | 92.12 |
|  youtube |  82.29 | 80.35 | 74.63 |
|  twitter |  72.40 | 74.40 | 65.89 |
|  example |  94.65 | 94.57 | 89.99 |