3_tree-lstm.py 13.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
"""
.. _model-tree-lstm:

Tree LSTM DGL Tutorial
=========================

**Author**: Zihao Ye, Qipeng Guo, `Minjie Wang
<https://jermainewang.github.io/>`_, `Jake Zhao
<https://cs.nyu.edu/~jakezhao/>`_, Zheng Zhang
"""
 
##############################################################################
#
# Tree-LSTM structure was first introduced by Kai et. al in an ACL 2015 
# paper: `Improved Semantic Representations From Tree-Structured Long
# Short-Term Memory Networks <https://arxiv.org/pdf/1503.00075.pdf>`__.
# The core idea is to introduce syntactic information for language tasks by 
# extending the chain-structured LSTM to a tree-structured LSTM. The Dependency 
# Tree/Constituency Tree techniques were leveraged to obtain a ''latent tree''.
#
# One, if not all, difficulty of training Tree-LSTMs is batching --- a standard 
# technique in machine learning to accelerate optimization. However, since trees 
# generally have different shapes by nature, parallization becomes non trivial. 
# DGL offers an alternative: to pool all the trees into one single graph then 
# induce the message passing over them guided by the structure of each tree.
#
# The task and the dataset
# ------------------------
# In this tutorial, we will use Tree-LSTMs for sentiment analysis.
# We have wrapped the
# `Stanford Sentiment Treebank <https://nlp.stanford.edu/sentiment/>`__ in
# ``dgl.data``. The dataset provides a fine-grained tree level sentiment
# annotation: 5 classes(very negative, negative, neutral, positive, and
# very positive) that indicates the sentiment in current subtree. Non-leaf
# nodes in constituency tree does not contain words, we use a special
# ``PAD_WORD`` token to denote them, during the training/inferencing,
# their embeddings would be masked to all-zero.
#
# .. figure:: https://i.loli.net/2018/11/08/5be3d4bfe031b.png
#    :alt: 
#
# The figure displays one sample of the SST dataset, which is a
# constituency parse tree with their nodes labeled with sentiment. To
# speed up things, let's build a tiny set with 5 sentences and take a look
# at the first one:
#

import dgl
49
from dgl.data.tree import SST
50
51
52
53
54

# Each sample in the dataset is a constituency tree. The leaf nodes
# represent words. The word is a int value stored in the "x" field.
# The non-leaf nodes has a special word PAD_WORD. The sentiment
# label is stored in the "y" feature field.
55
trainset = SST(mode='tiny')  # the "tiny" set has only 5 trees
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
tiny_sst = trainset.trees
num_vocabs = trainset.num_vocabs
num_classes = trainset.num_classes

vocab = trainset.vocab # vocabulary dict: key -> id
inv_vocab = {v: k for k, v in vocab.items()} # inverted vocabulary dict: id -> word

a_tree = tiny_sst[0]
for token in a_tree.ndata['x'].tolist():
    if token != trainset.PAD_WORD:
        print(inv_vocab[token], end=" ")

##############################################################################
# Step 1: batching
# ----------------
#
# The first step is to throw all the trees into one graph, using
# the :func:`~dgl.batched_graph.batch` API.
#

import networkx as nx
import matplotlib.pyplot as plt

graph = dgl.batch(tiny_sst)
def plot_tree(g):
    # this plot requires pygraphviz package
    pos = nx.nx_agraph.graphviz_layout(g, prog='dot')
    nx.draw(g, pos, with_labels=False, node_size=10,
            node_color=[[.5, .5, .5]], arrowsize=4)
    plt.show()

plot_tree(graph.to_networkx())

##############################################################################
# You can read more about the definition of :func:`~dgl.batched_graph.batch`
# (by clicking the API), or can skip ahead to the next step:
# 
# .. note::
#
#    **Definition**: a :class:`~dgl.batched_graph.BatchedDGLGraph` is a
#    :class:`~dgl.DGLGraph` that unions a list of :class:`~dgl.DGLGraph`\ s. 
#    
#    - The union includes all the nodes,
#      edges, and their features. The order of nodes, edges and features are
#      preserved. 
#     
#        - Given that we have :math:`V_i` nodes for graph
#          :math:`\mathcal{G}_i`, the node ID :math:`j` in graph
#          :math:`\mathcal{G}_i` correspond to node ID
#          :math:`j + \sum_{k=1}^{i-1} V_k` in the batched graph. 
#    
#        - Therefore, performing feature transformation and message passing on
#          ``BatchedDGLGraph`` is equivalent to doing those
#          on all ``DGLGraph`` constituents in parallel. 
#
#    - Duplicate references to the same graph are
#      treated as deep copies; the nodes, edges, and features are duplicated,
#      and mutation on one reference does not affect the other. 
#    - Currently, ``BatchedDGLGraph`` is immutable in
#      graph structure (i.e. one can't add
#      nodes and edges to it). We need to support mutable batched graphs in
#      (far) future. 
#    - The ``BatchedDGLGraph`` keeps track of the meta
#      information of the constituents so it can be
#      :func:`~dgl.batched_graph.unbatch`\ ed to list of ``DGLGraph``\ s.
#
# For more details about the :class:`~dgl.batched_graph.BatchedDGLGraph`
# module in DGL, you can click the class name.
#
# Step 2: Tree-LSTM Cell with message-passing APIs
# ------------------------------------------------
#
# The authors proposed two types of Tree LSTM: Child-Sum
# Tree-LSTMs, and :math:`N`-ary Tree-LSTMs. In this tutorial we focus 
# on applying *Binary* Tree-LSTM to binarized constituency trees(this 
# application is also known as *Constituency Tree-LSTM*). We use PyTorch 
# as our backend framework to set up the network.
#
# In `N`-ary Tree LSTM, each unit at node :math:`j` maintains a hidden
# representation :math:`h_j` and a memory cell :math:`c_j`. The unit
# :math:`j` takes the input vector :math:`x_j` and the hidden
# representations of the their child units: :math:`h_{jl}, 1\leq l\leq N` as
# input, then update its new hidden representation :math:`h_j` and memory
# cell :math:`c_j` by: 
#
# .. math::
#
#    i_j & = & \sigma\left(W^{(i)}x_j + \sum_{l=1}^{N}U^{(i)}_l h_{jl} + b^{(i)}\right),  & (1)\\
#    f_{jk} & = & \sigma\left(W^{(f)}x_j + \sum_{l=1}^{N}U_{kl}^{(f)} h_{jl} + b^{(f)} \right), &  (2)\\
#    o_j & = & \sigma\left(W^{(o)}x_j + \sum_{l=1}^{N}U_{l}^{(o)} h_{jl} + b^{(o)} \right), & (3)  \\
#    u_j & = & \textrm{tanh}\left(W^{(u)}x_j + \sum_{l=1}^{N} U_l^{(u)}h_{jl} + b^{(u)} \right), & (4)\\
#    c_j & = & i_j \odot u_j + \sum_{l=1}^{N} f_{jl} \odot c_{jl}, &(5) \\
#    h_j & = & o_j \cdot \textrm{tanh}(c_j), &(6)  \\
#
# It can be decomposed into three phases: ``message_func``,
# ``reduce_func`` and ``apply_node_func``.
#
# .. note::
#    ``apply_node_func`` is a new node UDF we have not introduced before. In
#    ``apply_node_func``, user specifies what to do with node features,
#    without considering edge features and messages. In Tree-LSTM case,
#    ``apply_node_func`` is a must, since there exists (leaf) nodes with
#    :math:`0` incoming edges, which would not be updated via
#    ``reduce_func``.
#

import torch as th
import torch.nn as nn

class TreeLSTMCell(nn.Module):
    def __init__(self, x_size, h_size):
        super(TreeLSTMCell, self).__init__()
        self.W_iou = nn.Linear(x_size, 3 * h_size, bias=False)
        self.U_iou = nn.Linear(2 * h_size, 3 * h_size, bias=False)
        self.b_iou = nn.Parameter(th.zeros(1, 3 * h_size))
        self.U_f = nn.Linear(2 * h_size, 2 * h_size)

    def message_func(self, edges):
        return {'h': edges.src['h'], 'c': edges.src['c']}

    def reduce_func(self, nodes):
        # concatenate h_jl for equation (1), (2), (3), (4)
        h_cat = nodes.mailbox['h'].view(nodes.mailbox['h'].size(0), -1)
        # equation (2)
        f = th.sigmoid(self.U_f(h_cat)).view(*nodes.mailbox['h'].size())
        # second term of equation (5)
        c = th.sum(f * nodes.mailbox['c'], 1)
        return {'iou': self.U_iou(h_cat), 'c': c}

    def apply_node_func(self, nodes):
        # equation (1), (3), (4)
        iou = nodes.data['iou'] + self.b_iou
        i, o, u = th.chunk(iou, 3, 1)
        i, o, u = th.sigmoid(i), th.sigmoid(o), th.tanh(u)
        # equation (5)
        c = i * u + nodes.data['c']
        # equation (6)
        h = o * th.tanh(c)
        return {'h' : h, 'c' : c}

##############################################################################
# Step 3: define traversal
# ------------------------
#
# After defining the message passing functions, we then need to induce the
# right order to trigger them. This is a significant departure from models
# such as GCN, where all nodes are pulling messages from upstream ones
# *simultaneously*.
#
# In the case of Tree-LSTM, messages start from leaves of the tree, and
# propogate/processed upwards until they reach the roots. A visulization
# is as follows:
#
# .. figure:: https://i.loli.net/2018/11/09/5be4b5d2df54d.gif
#    :alt:
#
# DGL defines a generator to perform the topological sort, each item is a
# tensor recording the nodes from bottom level to the roots. One can
# appreciate the degree of parallelism by inspecting the difference of the
# followings:
#

print('Traversing one tree:')
print(dgl.topological_nodes_generator(a_tree))

print('Traversing many trees at the same time:')
print(dgl.topological_nodes_generator(graph))

##############################################################################
# We then call :meth:`~dgl.DGLGraph.prop_nodes` to trigger the message passing:

import dgl.function as fn
import torch as th

graph.ndata['a'] = th.ones(graph.number_of_nodes(), 1)
graph.register_message_func(fn.copy_src('a', 'a'))
graph.register_reduce_func(fn.sum('a', 'a'))

traversal_order = dgl.topological_nodes_generator(graph)
graph.prop_nodes(traversal_order)

# the following is a syntax sugar that does the same
# dgl.prop_nodes_topo(graph)

##############################################################################
# .. note::
#
#    Before we call :meth:`~dgl.DGLGraph.prop_nodes`, we must specify a
#    `message_func` and `reduce_func` in advance, here we use built-in
#    copy-from-source and sum function as our message function and reduce
#    function for demonstration.
#
# Putting it together
# -------------------
#
# Here is the complete code that specifies the ``Tree-LSTM`` class:
#

class TreeLSTM(nn.Module):
    def __init__(self,
                 num_vocabs,
                 x_size,
                 h_size,
                 num_classes,
                 dropout,
                 pretrained_emb=None):
        super(TreeLSTM, self).__init__()
        self.x_size = x_size
        self.embedding = nn.Embedding(num_vocabs, x_size)
        if pretrained_emb is not None:
            print('Using glove')
            self.embedding.weight.data.copy_(pretrained_emb)
            self.embedding.weight.requires_grad = True
        self.dropout = nn.Dropout(dropout)
        self.linear = nn.Linear(h_size, num_classes)
        self.cell = TreeLSTMCell(x_size, h_size)

    def forward(self, batch, h, c):
        """Compute tree-lstm prediction given a batch.

        Parameters
        ----------
        batch : dgl.data.SSTBatch
            The data batch.
        h : Tensor
            Initial hidden state.
        c : Tensor
            Initial cell state.

        Returns
        -------
        logits : Tensor
            The prediction of each node.
        """
        g = batch.graph
        g.register_message_func(self.cell.message_func)
        g.register_reduce_func(self.cell.reduce_func)
        g.register_apply_node_func(self.cell.apply_node_func)
        # feed embedding
        embeds = self.embedding(batch.wordid * batch.mask)
        g.ndata['iou'] = self.cell.W_iou(self.dropout(embeds)) * batch.mask.float().unsqueeze(-1)
        g.ndata['h'] = h
        g.ndata['c'] = c
        # propagate
        dgl.prop_nodes_topo(g)
        # compute logits
        h = self.dropout(g.ndata.pop('h'))
        logits = self.linear(h)
        return logits

##############################################################################
# Main Loop
# ---------
#
# Finally, we could write a training paradigm in PyTorch:
#

from torch.utils.data import DataLoader
import torch.nn.functional as F

device = th.device('cpu')
# hyper parameters
x_size = 256
h_size = 256
dropout = 0.5
lr = 0.05
weight_decay = 1e-4
epochs = 10

# create the model
model = TreeLSTM(trainset.num_vocabs,
                 x_size,
                 h_size,
                 trainset.num_classes,
                 dropout)
print(model)

# create the optimizer
optimizer = th.optim.Adagrad(model.parameters(),
                          lr=lr,
                          weight_decay=weight_decay)
                          
train_loader = DataLoader(dataset=tiny_sst,
                          batch_size=5,
340
                          collate_fn=SST.batcher(device),
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
                          shuffle=False,
                          num_workers=0)

# training loop
for epoch in range(epochs):
    for step, batch in enumerate(train_loader):
        g = batch.graph
        n = g.number_of_nodes()
        h = th.zeros((n, h_size))
        c = th.zeros((n, h_size))
        logits = model(batch, h, c)
        logp = F.log_softmax(logits, 1)
        loss = F.nll_loss(logp, batch.label, reduction='sum') 
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        pred = th.argmax(logits, 1)
        acc = float(th.sum(th.eq(batch.label, pred))) / len(batch.label)
        print("Epoch {:05d} | Step {:05d} | Loss {:.4f} | Acc {:.4f} |".format(
            epoch, step, loss.item(), acc))

##############################################################################
# To train the model on full dataset with different settings(CPU/GPU,
# etc.), please refer to our repo's
# `example <https://github.com/jermainewang/dgl/tree/master/examples/pytorch/tree_lstm>`__.
# Besides, we also provide an implementation of the Child-Sum Tree LSTM.