entity_classify.py 6.18 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
"""
Modeling Relational Data with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1703.06103
Code: https://github.com/tkipf/relational-gcn

Difference compared to tkipf/relation-gcn
* l2norm applied to all weights
* remove nodes that won't be touched
"""

import argparse
import numpy as np
import time
import mxnet as mx
from mxnet import gluon
import mxnet.ndarray as F
from dgl import DGLGraph
Minjie Wang's avatar
Minjie Wang committed
18
from dgl.nn.mxnet import RelGraphConv
19
20
21
22
23
24
25
from dgl.contrib.data import load_data
from functools import partial

from model import BaseRGCN

class EntityClassify(BaseRGCN):
    def build_input_layer(self):
Minjie Wang's avatar
Minjie Wang committed
26
27
28
        return RelGraphConv(self.num_nodes, self.h_dim, self.num_rels, "basis",
                self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
                dropout=self.dropout)
29
30

    def build_hidden_layer(self, idx):
Minjie Wang's avatar
Minjie Wang committed
31
32
33
        return RelGraphConv(self.h_dim, self.h_dim, self.num_rels, "basis",
                self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
                dropout=self.dropout)
34
35

    def build_output_layer(self):
Minjie Wang's avatar
Minjie Wang committed
36
        return RelGraphConv(self.h_dim, self.out_dim, self.num_rels, "basis",
37
                self.num_bases, activation=None,
Minjie Wang's avatar
Minjie Wang committed
38
                self_loop=self.use_self_loop)
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

def main(args):
    # load graph data
    data = load_data(args.dataset, bfs_level=args.bfs_level, relabel=args.relabel)
    num_nodes = data.num_nodes
    num_rels = data.num_rels
    num_classes = data.num_classes
    labels = data.labels
    train_idx = data.train_idx
    test_idx = data.test_idx

    # split dataset into train, validate, test
    if args.validation:
        val_idx = train_idx[:len(train_idx) // 5]
        train_idx = train_idx[len(train_idx) // 5:]
    else:
        val_idx = train_idx

    train_idx = mx.nd.array(train_idx)
Minjie Wang's avatar
Minjie Wang committed
58
59
    # since the nodes are featureless, the input feature is then the node id.
    feats = mx.nd.arange(num_nodes, dtype='int32')
60
    # edge type and normalization factor
Minjie Wang's avatar
Minjie Wang committed
61
    edge_type = mx.nd.array(data.edge_type, dtype='int32')
62
63
64
65
66
67
68
    edge_norm = mx.nd.array(data.edge_norm).expand_dims(1)
    labels = mx.nd.array(labels).reshape((-1))

    # check cuda
    use_cuda = args.gpu >= 0
    if use_cuda:
        ctx = mx.gpu(args.gpu)
Minjie Wang's avatar
Minjie Wang committed
69
        feats = feats.as_in_context(ctx)
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        edge_type = edge_type.as_in_context(ctx)
        edge_norm = edge_norm.as_in_context(ctx)
        labels = labels.as_in_context(ctx)
        train_idx = train_idx.as_in_context(ctx)
    else:
        ctx = mx.cpu(0)

    # create graph
    g = DGLGraph()
    g.add_nodes(num_nodes)
    g.add_edges(data.edge_src, data.edge_dst)

    # create model
    model = EntityClassify(len(g),
                           args.n_hidden,
                           num_classes,
                           num_rels,
                           num_bases=args.n_bases,
                           num_hidden_layers=args.n_layers - 2,
                           dropout=args.dropout,
Minjie Wang's avatar
Minjie Wang committed
90
                           use_self_loop=args.use_self_loop,
91
92
93
94
95
96
97
98
99
100
101
102
103
104
                           gpu_id=args.gpu)
    model.initialize(ctx=ctx)

    # optimizer
    trainer = gluon.Trainer(model.collect_params(), 'adam', {'learning_rate': args.lr, 'wd': args.l2norm})
    loss_fcn = gluon.loss.SoftmaxCELoss(from_logits=False)

    # training loop
    print("start training...")
    forward_time = []
    backward_time = []
    for epoch in range(args.n_epochs):
        t0 = time.time()
        with mx.autograd.record():
Minjie Wang's avatar
Minjie Wang committed
105
            pred = model(g, feats, edge_type, edge_norm)
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
            loss = loss_fcn(pred[train_idx], labels[train_idx])
        t1 = time.time()
        loss.backward()
        trainer.step(len(train_idx))
        t2 = time.time()

        forward_time.append(t1 - t0)
        backward_time.append(t2 - t1)
        print("Epoch {:05d} | Train Forward Time(s) {:.4f} | Backward Time(s) {:.4f}".
              format(epoch, forward_time[-1], backward_time[-1]))
        train_acc = F.sum(pred[train_idx].argmax(axis=1) == labels[train_idx]).asscalar() / train_idx.shape[0]
        val_acc = F.sum(pred[val_idx].argmax(axis=1) == labels[val_idx]).asscalar() / len(val_idx)
        print("Train Accuracy: {:.4f} | Validation Accuracy: {:.4f}".format(train_acc, val_acc))
    print()

Minjie Wang's avatar
Minjie Wang committed
121
    logits = model.forward(g, feats, edge_type, edge_norm)
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    test_acc = F.sum(logits[test_idx].argmax(axis=1) == labels[test_idx]).asscalar() / len(test_idx)
    print("Test Accuracy: {:.4f}".format(test_acc))
    print()

    print("Mean forward time: {:4f}".format(np.mean(forward_time[len(forward_time) // 4:])))
    print("Mean backward time: {:4f}".format(np.mean(backward_time[len(backward_time) // 4:])))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='RGCN')
    parser.add_argument("--dropout", type=float, default=0,
            help="dropout probability")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden units")
    parser.add_argument("--gpu", type=int, default=-1,
            help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
            help="learning rate")
    parser.add_argument("--n-bases", type=int, default=-1,
            help="number of filter weight matrices, default: -1 [use all]")
    parser.add_argument("--n-layers", type=int, default=2,
            help="number of propagation rounds")
    parser.add_argument("-e", "--n-epochs", type=int, default=50,
            help="number of training epochs")
    parser.add_argument("-d", "--dataset", type=str, required=True,
            help="dataset to use")
    parser.add_argument("--l2norm", type=float, default=0,
            help="l2 norm coef")
    parser.add_argument("--relabel", default=False, action='store_true',
            help="remove untouched nodes and relabel")
Minjie Wang's avatar
Minjie Wang committed
152
153
    parser.add_argument("--use-self-loop", default=False, action='store_true',
            help="include self feature as a special relation")
154
155
156
157
158
159
160
161
    fp = parser.add_mutually_exclusive_group(required=False)
    fp.add_argument('--validation', dest='validation', action='store_true')
    fp.add_argument('--testing', dest='validation', action='store_false')
    parser.set_defaults(validation=True)

    args = parser.parse_args()
    print(args)
    args.bfs_level = args.n_layers + 1 # pruning used nodes for memory
Minjie Wang's avatar
Minjie Wang committed
162
    main(args)