pointnet2.py 12.6 KB
Newer Older
1
2
3
4
5
6
7
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
import dgl
import dgl.function as fn
8
from dgl.geometry.pytorch import farthest_point_sampler
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

'''
Part of the code are adapted from
https://github.com/yanx27/Pointnet_Pointnet2_pytorch
'''

def square_distance(src, dst):
    '''
    Adapted from https://github.com/yanx27/Pointnet_Pointnet2_pytorch
    '''
    B, N, _ = src.shape
    _, M, _ = dst.shape
    dist = -2 * torch.matmul(src, dst.permute(0, 2, 1))
    dist += torch.sum(src ** 2, -1).view(B, N, 1)
    dist += torch.sum(dst ** 2, -1).view(B, 1, M)
    return dist

def index_points(points, idx):
    '''
    Adapted from https://github.com/yanx27/Pointnet_Pointnet2_pytorch
    '''
    device = points.device
    B = points.shape[0]
    view_shape = list(idx.shape)
    view_shape[1:] = [1] * (len(view_shape) - 1)
    repeat_shape = list(idx.shape)
    repeat_shape[0] = 1
    batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape)
    new_points = points[batch_indices, idx, :]
    return new_points

class FixedRadiusNearNeighbors(nn.Module):
    '''
42
    Ball Query - Find the neighbors with-in a fixed radius
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    '''
    def __init__(self, radius, n_neighbor):
        super(FixedRadiusNearNeighbors, self).__init__()
        self.radius = radius
        self.n_neighbor = n_neighbor

    def forward(self, pos, centroids):
        '''
        Adapted from https://github.com/yanx27/Pointnet_Pointnet2_pytorch
        '''
        device = pos.device
        B, N, _ = pos.shape
        center_pos = index_points(pos, centroids)
        _, S, _ = center_pos.shape
        group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N).repeat([B, S, 1])
        sqrdists = square_distance(center_pos, pos)
        group_idx[sqrdists > self.radius ** 2] = N
        group_idx = group_idx.sort(dim=-1)[0][:, :, :self.n_neighbor]
        group_first = group_idx[:, :, 0].view(B, S, 1).repeat([1, 1, self.n_neighbor])
        mask = group_idx == N
        group_idx[mask] = group_first[mask]
        return group_idx

class FixedRadiusNNGraph(nn.Module):
    '''
    Build NN graph
    '''
    def __init__(self, radius, n_neighbor):
        super(FixedRadiusNNGraph, self).__init__()
        self.radius = radius
        self.n_neighbor = n_neighbor
        self.frnn = FixedRadiusNearNeighbors(radius, n_neighbor)

    def forward(self, pos, centroids, feat=None):
        dev = pos.device
        group_idx = self.frnn(pos, centroids)
        B, N, _ = pos.shape
        glist = []
        for i in range(B):
            center = torch.zeros((N)).to(dev)
            center[centroids[i]] = 1
            src = group_idx[i].contiguous().view(-1)
            dst = centroids[i].view(-1, 1).repeat(1, self.n_neighbor).view(-1)

            unified = torch.cat([src, dst])
            uniq, inv_idx = torch.unique(unified, return_inverse=True)
            src_idx = inv_idx[:src.shape[0]]
            dst_idx = inv_idx[src.shape[0]:]

92
            g = dgl.graph((src_idx, dst_idx))
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
            g.ndata['pos'] = pos[i][uniq]
            g.ndata['center'] = center[uniq]
            if feat is not None:
                g.ndata['feat'] = feat[i][uniq]
            glist.append(g)
        bg = dgl.batch(glist)
        return bg

class RelativePositionMessage(nn.Module):
    '''
    Compute the input feature from neighbors
    '''
    def __init__(self, n_neighbor):
        super(RelativePositionMessage, self).__init__()
        self.n_neighbor = n_neighbor

    def forward(self, edges):
        pos = edges.src['pos'] - edges.dst['pos']
        if 'feat' in edges.src:
            res = torch.cat([pos, edges.src['feat']], 1)
        else:
            res = pos
        return {'agg_feat': res}

class PointNetConv(nn.Module):
    '''
    Feature aggregation
    '''
    def __init__(self, sizes, batch_size):
        super(PointNetConv, self).__init__()
        self.batch_size = batch_size
        self.conv = nn.ModuleList()
        self.bn = nn.ModuleList()
        for i in range(1, len(sizes)):
            self.conv.append(nn.Conv2d(sizes[i-1], sizes[i], 1))
            self.bn.append(nn.BatchNorm2d(sizes[i]))

    def forward(self, nodes):
        shape = nodes.mailbox['agg_feat'].shape
132
        h = nodes.mailbox['agg_feat'].view(self.batch_size, -1, shape[1], shape[2]).permute(0, 3, 2, 1)
133
134
135
136
        for conv, bn in zip(self.conv, self.bn):
            h = conv(h)
            h = bn(h)
            h = F.relu(h)
137
        h = torch.max(h, 2)[0]
138
139
140
        feat_dim = h.shape[1]
        h = h.permute(0, 2, 1).reshape(-1, feat_dim)
        return {'new_feat': h}
141

142
143
    def group_all(self, pos, feat):
        '''
144
        Feature aggregation and pooling for the non-sampling layer
145
146
147
148
149
        '''
        if feat is not None:
            h = torch.cat([pos, feat], 2)
        else:
            h = pos
150
151
152
153
        B, N, D = h.shape
        _, _, C = pos.shape
        new_pos = torch.zeros(B, 1, C)
        h = h.permute(0, 2, 1).view(B, -1, N, 1)
154
155
156
157
        for conv, bn in zip(self.conv, self.bn):
            h = conv(h)
            h = bn(h)
            h = F.relu(h)
158
159
        h = torch.max(h[:, :, :, 0], 2)[0]  # [B,D]
        return new_pos, h
160
161
162
163
164
165
166
167
168
169

class SAModule(nn.Module):
    """
    The Set Abstraction Layer
    """
    def __init__(self, npoints, batch_size, radius, mlp_sizes, n_neighbor=64,
                 group_all=False):
        super(SAModule, self).__init__()
        self.group_all = group_all
        if not group_all:
170
            self.npoints = npoints
171
172
173
174
175
176
177
178
179
            self.frnn_graph = FixedRadiusNNGraph(radius, n_neighbor)
        self.message = RelativePositionMessage(n_neighbor)
        self.conv = PointNetConv(mlp_sizes, batch_size)
        self.batch_size = batch_size

    def forward(self, pos, feat):
        if self.group_all:
            return self.conv.group_all(pos, feat)

180
        centroids = farthest_point_sampler(pos, self.npoints)
181
182
        g = self.frnn_graph(pos, centroids, feat)
        g.update_all(self.message, self.conv)
183

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        mask = g.ndata['center'] == 1
        pos_dim = g.ndata['pos'].shape[-1]
        feat_dim = g.ndata['new_feat'].shape[-1]
        pos_res = g.ndata['pos'][mask].view(self.batch_size, -1, pos_dim)
        feat_res = g.ndata['new_feat'][mask].view(self.batch_size, -1, feat_dim)
        return pos_res, feat_res

class SAMSGModule(nn.Module):
    """
    The Set Abstraction Multi-Scale grouping Layer
    """
    def __init__(self, npoints, batch_size, radius_list, n_neighbor_list, mlp_sizes_list):
        super(SAMSGModule, self).__init__()
        self.batch_size = batch_size
        self.group_size = len(radius_list)

200
        self.npoints = npoints
201
202
203
204
205
206
207
208
209
210
        self.frnn_graph_list = nn.ModuleList()
        self.message_list = nn.ModuleList()
        self.conv_list = nn.ModuleList()
        for i in range(self.group_size):
            self.frnn_graph_list.append(FixedRadiusNNGraph(radius_list[i],
                                                           n_neighbor_list[i]))
            self.message_list.append(RelativePositionMessage(n_neighbor_list[i]))
            self.conv_list.append(PointNetConv(mlp_sizes_list[i], batch_size))

    def forward(self, pos, feat):
211
        centroids = farthest_point_sampler(pos, self.npoints)
212
        feat_res_list = []
213

214
215
216
217
218
219
220
221
222
223
        for i in range(self.group_size):
            g = self.frnn_graph_list[i](pos, centroids, feat)
            g.update_all(self.message_list[i], self.conv_list[i])
            mask = g.ndata['center'] == 1
            pos_dim = g.ndata['pos'].shape[-1]
            feat_dim = g.ndata['new_feat'].shape[-1]
            if i == 0:
                pos_res = g.ndata['pos'][mask].view(self.batch_size, -1, pos_dim)
            feat_res = g.ndata['new_feat'][mask].view(self.batch_size, -1, feat_dim)
            feat_res_list.append(feat_res)
224

225
226
227
        feat_res = torch.cat(feat_res_list, 2)
        return pos_res, feat_res

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
class PointNet2FP(nn.Module):
    """
    The Feature Propagation Layer
    """
    def __init__(self, input_dims, sizes):
        super(PointNet2FP, self).__init__()
        self.convs = nn.ModuleList()
        self.bns = nn.ModuleList()

        sizes = [input_dims] + sizes
        for i in range(1, len(sizes)):
            self.convs.append(nn.Conv1d(sizes[i-1], sizes[i], 1))
            self.bns.append(nn.BatchNorm1d(sizes[i]))

    def forward(self, x1, x2, feat1, feat2):
        """
        Adapted from https://github.com/yanx27/Pointnet_Pointnet2_pytorch
            Input:
                x1: input points position data, [B, N, C]
                x2: sampled input points position data, [B, S, C]
                feat1: input points data, [B, N, D]
                feat2: input points data, [B, S, D]
            Return:
                new_feat: upsampled points data, [B, D', N]
        """
        B, N, C = x1.shape
        _, S, _ = x2.shape

        if S == 1:
            interpolated_feat = feat2.repeat(1, N, 1)
        else:
            dists = square_distance(x1, x2)
            dists, idx = dists.sort(dim=-1)
            dists, idx = dists[:, :, :3], idx[:, :, :3]  # [B, N, 3]

            dist_recip = 1.0 / (dists + 1e-8)
            norm = torch.sum(dist_recip, dim=2, keepdim=True)
            weight = dist_recip / norm
            interpolated_feat = torch.sum(index_points(feat2, idx) * weight.view(B, N, 3, 1), dim=2)

        if feat1 is not None:
            new_feat = torch.cat([feat1, interpolated_feat], dim=-1)
        else:
            new_feat = interpolated_feat

        new_feat = new_feat.permute(0, 2, 1)  # [B, D, S]
        for i, conv in enumerate(self.convs):
            bn = self.bns[i]
            new_feat = F.relu(bn(conv(new_feat)))
        return new_feat


280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
class PointNet2SSGCls(nn.Module):
    def __init__(self, output_classes, batch_size, input_dims=3, dropout_prob=0.4):
        super(PointNet2SSGCls, self).__init__()
        self.input_dims = input_dims

        self.sa_module1 = SAModule(512, batch_size, 0.2, [input_dims, 64, 64, 128])
        self.sa_module2 = SAModule(128, batch_size, 0.4, [128 + 3, 128, 128, 256])
        self.sa_module3 = SAModule(None, batch_size, None, [256 + 3, 256, 512, 1024],
                                   group_all=True)

        self.mlp1 = nn.Linear(1024, 512)
        self.bn1 = nn.BatchNorm1d(512)
        self.drop1 = nn.Dropout(dropout_prob)

        self.mlp2 = nn.Linear(512, 256)
        self.bn2 = nn.BatchNorm1d(256)
        self.drop2 = nn.Dropout(dropout_prob)

        self.mlp_out = nn.Linear(256, output_classes)

    def forward(self, x):
        if x.shape[-1] > 3:
            pos = x[:, :, :3]
            feat = x[:, :, 3:]
        else:
            pos = x
            feat = None
        pos, feat = self.sa_module1(pos, feat)
        pos, feat = self.sa_module2(pos, feat)
309
        _, h = self.sa_module3(pos, feat)
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

        h = self.mlp1(h)
        h = self.bn1(h)
        h = F.relu(h)
        h = self.drop1(h)
        h = self.mlp2(h)
        h = self.bn2(h)
        h = F.relu(h)
        h = self.drop2(h)

        out = self.mlp_out(h)
        return out

class PointNet2MSGCls(nn.Module):
    def __init__(self, output_classes, batch_size, input_dims=3, dropout_prob=0.4):
        super(PointNet2MSGCls, self).__init__()
        self.input_dims = input_dims

        self.sa_msg_module1 = SAMSGModule(512, batch_size, [0.1, 0.2, 0.4], [16, 32, 128],
                                          [[input_dims, 32, 32, 64], [input_dims, 64, 64, 128],
                                           [input_dims, 64, 96, 128]])
        self.sa_msg_module2 = SAMSGModule(128, batch_size, [0.2, 0.4, 0.8], [32, 64, 128],
                                          [[320 + 3, 64, 64, 128], [320 + 3, 128, 128, 256],
                                           [320 + 3, 128, 128, 256]])
        self.sa_module3 = SAModule(None, batch_size, None, [640 + 3, 256, 512, 1024],
                                   group_all=True)

        self.mlp1 = nn.Linear(1024, 512)
        self.bn1 = nn.BatchNorm1d(512)
        self.drop1 = nn.Dropout(dropout_prob)

        self.mlp2 = nn.Linear(512, 256)
        self.bn2 = nn.BatchNorm1d(256)
        self.drop2 = nn.Dropout(dropout_prob)

        self.mlp_out = nn.Linear(256, output_classes)

    def forward(self, x):
        if x.shape[-1] > 3:
            pos = x[:, :, :3]
            feat = x[:, :, 3:]
        else:
            pos = x
            feat = None
        pos, feat = self.sa_msg_module1(pos, feat)
        pos, feat = self.sa_msg_module2(pos, feat)
356
        _, h = self.sa_module3(pos, feat)
357
358
359
360
361
362
363
364
365
366
367
368

        h = self.mlp1(h)
        h = self.bn1(h)
        h = F.relu(h)
        h = self.drop1(h)
        h = self.mlp2(h)
        h = self.bn2(h)
        h = F.relu(h)
        h = self.drop2(h)

        out = self.mlp_out(h)
        return out