binary_reduce_impl.h 8.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
/*!
 *  Copyright (c) 2019 by Contributors
 * \file kernel/cpu/binary_reduce_impl.h
 * \brief Minigun CPU UDFs for binary reduce
 */
#ifndef DGL_KERNEL_CPU_BINARY_REDUCE_IMPL_H_
#define DGL_KERNEL_CPU_BINARY_REDUCE_IMPL_H_

#include <minigun/minigun.h>

#include <algorithm>

#include "../binary_reduce_impl_decl.h"
#include "../utils.h"
#include "./functor.h"
16
#include "../csr_interface.h"
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

namespace dgl {
namespace kernel {
namespace cpu {

// Minigun UDF to compute binary reduce.
template <typename Idx, typename DType, typename Functors>
struct BinaryReduce {
  static inline bool CondEdge(
      Idx src, Idx dst, Idx eid, GData<Idx, DType>* gdata) {
    return true;
  }
  static inline void ApplyEdge(
      Idx src, Idx dst, Idx eid, GData<Idx, DType>* gdata) {
    const int64_t D = gdata->x_length;
    Idx lid = Functors::SelectLeft(src, eid, dst);
    Idx rid = Functors::SelectRight(src, eid, dst);
    Idx oid = Functors::SelectOut(src, eid, dst);
    if (gdata->lhs_mapping) {
      lid = Functors::GetId(lid, gdata->lhs_mapping);
    }
    if (gdata->rhs_mapping) {
      rid = Functors::GetId(rid, gdata->rhs_mapping);
    }
    if (gdata->out_mapping) {
      oid = Functors::GetId(oid, gdata->out_mapping);
    }
    DType* lhsoff = gdata->lhs_data + lid * D;
    DType* rhsoff = gdata->rhs_data + rid * D;
    DType* outoff = gdata->out_data + oid * D;
    for (int64_t tx = 0; tx < D; ++tx) {
      DType lhs = Functors::Read(lhsoff + tx);
      DType rhs = Functors::Read(rhsoff + tx);
      DType out = Functors::Op(lhs, rhs);
      Functors::Write(outoff + tx, out);
    }
  }
};

// Convert flattened index to multi-dimension index (assume row-major).
inline void Unravel(int64_t idx, int ndim,
    const int64_t* shape, const int64_t* stride, int64_t* out) {
  for (int d = 0; d < ndim; ++d) {
    out[d] = (idx / stride[d]) % shape[d];
  }
}

// Convert multi-dimension index to flattened index (assume row-major).
inline int64_t Ravel(const int64_t* idx, int ndim,
    const int64_t* shape, const int64_t* stride) {
  int64_t out = 0;
  for (int d = 0; d < ndim; ++d) {
    out += std::min(idx[d], shape[d] - 1) * stride[d];
  }
  return out;
}

// Minigun UDF to compute binary reduce with broadcasting.
template <int NDim, typename Idx, typename DType, typename Functors>
struct BinaryReduceBcast {
  static inline bool CondEdge(
      Idx src, Idx dst, Idx eid, BcastGData<NDim, Idx, DType>* gdata) {
    return true;
  }
  static inline void ApplyEdge(
      Idx src, Idx dst, Idx eid, BcastGData<NDim, Idx, DType>* gdata) {
    Idx lid = Functors::SelectLeft(src, eid, dst);
    Idx rid = Functors::SelectRight(src, eid, dst);
    Idx oid = Functors::SelectOut(src, eid, dst);
    if (gdata->lhs_mapping) {
      lid = Functors::GetId(lid, gdata->lhs_mapping);
    }
    if (gdata->rhs_mapping) {
      rid = Functors::GetId(rid, gdata->rhs_mapping);
    }
    if (gdata->out_mapping) {
      oid = Functors::GetId(oid, gdata->out_mapping);
    }
    DType* lhsoff = gdata->lhs_data + lid * gdata->lhs_len;
    DType* rhsoff = gdata->rhs_data + rid * gdata->rhs_len;
    DType* outoff = gdata->out_data + oid * gdata->out_len;
    int64_t tmp[NDim];  // store unraveled idx.
    for (int64_t tx = 0; tx < gdata->out_len; ++tx) {
      Unravel(tx, gdata->ndim, gdata->out_shape, gdata->out_stride, tmp);
      DType lhs = Functors::Read(lhsoff +
          Ravel(tmp, gdata->ndim, gdata->lhs_shape, gdata->lhs_stride));
      DType rhs = Functors::Read(rhsoff +
          Ravel(tmp, gdata->ndim, gdata->rhs_shape, gdata->rhs_stride));
      DType out = Functors::Op(lhs, rhs);
      Functors::Write(outoff + tx, out);
    }
  }
};

// Auxiliary template used in UDF.
template <typename Idx, typename DType,
          typename LeftSelector, typename RightSelector,
          typename BinaryOp, typename Reducer>
struct FunctorsTempl {
  static inline Idx SelectOut(
      Idx src, Idx edge, Idx dst) {
    return OutSelector<Reducer>::Type::Call(src, edge, dst);
  }
  static inline Idx SelectLeft(
      Idx src, Idx edge, Idx dst) {
    return LeftSelector::Call(src, edge, dst);
  }
  static inline Idx SelectRight(
      Idx src, Idx edge, Idx dst) {
    return RightSelector::Call(src, edge, dst);
  }
  static inline DType Op(DType lhs, DType rhs) {
    return BinaryOp::Call(lhs, rhs);
  }
  static inline DType Read(DType* addr) {
    return *addr;
  }
  static inline void Write(DType* addr, DType val) {
    Reducer::Call(addr, val);
  }
  static inline Idx GetId(Idx id, Idx* id_map) {
    return *(id_map + id);
  }
};

typedef minigun::advance::Config<true, minigun::advance::kV2N> AdvanceConfig;

}  // namespace cpu

// Template implementation of BinaryReduce operator.
template <int XPU, typename Idx, typename DType,
          typename LeftSelector, typename RightSelector,
          typename BinaryOp, typename Reducer>
void CallBinaryReduce(const minigun::advance::RuntimeConfig& rtcfg,
151
                      const CSRWrapper& graph,
152
153
154
155
156
157
                      GData<Idx, DType>* gdata) {
  typedef cpu::FunctorsTempl<Idx, DType, LeftSelector,
                        RightSelector, BinaryOp, Reducer>
          Functors;
  typedef cpu::BinaryReduce<Idx, DType, Functors> UDF;
  // csr
158
159
  auto outcsr = graph.GetOutCSRMatrix();
  minigun::Csr<Idx> csr = utils::CreateCsr<Idx>(outcsr.indptr, outcsr.indices);
160
161
162
163
  // If the user-given mapping is none and the target is edge data, we need to
  // replace the mapping by the edge ids in the csr graph so that the edge
  // data is correctly read/written.
  if (LeftSelector::target == binary_op::kEdge && gdata->lhs_mapping == nullptr) {
164
    gdata->lhs_mapping = static_cast<Idx*>(outcsr.data->data);
165
166
  }
  if (RightSelector::target == binary_op::kEdge && gdata->rhs_mapping == nullptr) {
167
    gdata->rhs_mapping = static_cast<Idx*>(outcsr.data->data);
168
169
170
  }
  if (OutSelector<Reducer>::Type::target == binary_op::kEdge
      && gdata->out_mapping == nullptr) {
171
    gdata->out_mapping = static_cast<Idx*>(outcsr.data->data);
172
173
174
175
176
177
178
179
180
181
182
183
  }
  // TODO(minjie): allocator
  minigun::advance::Advance<XPU, Idx, cpu::AdvanceConfig, GData<Idx, DType>, UDF>(
        rtcfg, csr, gdata, minigun::IntArray1D<Idx>());
}

// Template implementation of BinaryReduce broadcasting operator.
template <int XPU, int NDim, typename Idx, typename DType,
          typename LeftSelector, typename RightSelector,
          typename BinaryOp, typename Reducer>
void CallBinaryReduceBcast(
  const minigun::advance::RuntimeConfig& rtcfg,
184
  const CSRWrapper& graph,
185
186
187
188
189
190
  BcastGData<NDim, Idx, DType>* gdata) {
  typedef cpu::FunctorsTempl<Idx, DType, LeftSelector,
                        RightSelector, BinaryOp, Reducer>
          Functors;
  typedef cpu::BinaryReduceBcast<NDim, Idx, DType, Functors> UDF;
  // csr
191
192
  auto outcsr = graph.GetOutCSRMatrix();
  minigun::Csr<Idx> csr = utils::CreateCsr<Idx>(outcsr.indptr, outcsr.indices);
193
194
195
196
  // If the user-given mapping is none and the target is edge data, we need to
  // replace the mapping by the edge ids in the csr graph so that the edge
  // data is correctly read/written.
  if (LeftSelector::target == binary_op::kEdge && gdata->lhs_mapping == nullptr) {
197
    gdata->lhs_mapping = static_cast<Idx*>(outcsr.data->data);
198
199
  }
  if (RightSelector::target == binary_op::kEdge && gdata->rhs_mapping == nullptr) {
200
    gdata->rhs_mapping = static_cast<Idx*>(outcsr.data->data);
201
202
203
  }
  if (OutSelector<Reducer>::Type::target == binary_op::kEdge
      && gdata->out_mapping == nullptr) {
204
    gdata->out_mapping = static_cast<Idx*>(outcsr.data->data);
205
206
207
208
209
210
211
212
213
214
215
216
217
  }
  // TODO(minjie): allocator
  minigun::advance::Advance<XPU, Idx, cpu::AdvanceConfig,
    BcastGData<NDim, Idx, DType>, UDF>(
        rtcfg, csr, gdata, minigun::IntArray1D<Idx>());
}

// Following macro is used to generate explicit-specialization of the template
// operator.
#define GEN_DEFINE(dtype, lhs_tgt, rhs_tgt, op)                    \
  template void CallBinaryReduce<XPU, IDX,                      \
        dtype, lhs_tgt, rhs_tgt, op<dtype>, REDUCER<XPU, dtype>>(  \
      const minigun::advance::RuntimeConfig& rtcfg,                \
218
      const CSRWrapper& graph,                                     \
219
220
221
222
223
224
225
      GData<IDX, dtype>* gdata);

#define GEN_BCAST_DEFINE(ndim, dtype, lhs_tgt, rhs_tgt, op)         \
  template void CallBinaryReduceBcast<XPU, ndim, IDX, dtype,     \
                                 lhs_tgt, rhs_tgt,                  \
                                 op<dtype>, REDUCER<XPU, dtype>>(   \
      const minigun::advance::RuntimeConfig& rtcfg,                 \
226
      const CSRWrapper& graph,                                      \
227
228
229
230
231
232
233
234
      BcastGData<ndim, IDX, dtype>* gdata);

#define EVAL(F, ...) MSVC_EXPAND(F(__VA_ARGS__))

}  // namespace kernel
}  // namespace dgl

#endif  // DGL_KERNEL_CPU_BINARY_REDUCE_IMPL_H_