"git@developer.sourcefind.cn:renzhc/diffusers_dcu.git" did not exist on "19a0ce4a47cf083223a249f7f5d14e9a097f65e6"
ndarray.cc 15.5 KB
Newer Older
Minjie Wang's avatar
Minjie Wang committed
1
2
3
4
5
/*!
 *  Copyright (c) 2017 by Contributors
 * \file ndarray.cc
 * \brief NDArray container infratructure.
 */
6
#include <string.h>
Minjie Wang's avatar
Minjie Wang committed
7
8
9
10
#include <dmlc/logging.h>
#include <dgl/runtime/ndarray.h>
#include <dgl/runtime/c_runtime_api.h>
#include <dgl/runtime/device_api.h>
11
12
#include <dgl/runtime/shared_mem.h>
#include <dgl/zerocopy_serializer.h>
Minjie Wang's avatar
Minjie Wang committed
13
14
15
16
17
#include "runtime_base.h"

// deleter for arrays used by DLPack exporter
extern "C" void NDArrayDLPackDeleter(DLManagedTensor* tensor);

18
namespace dgl {
Minjie Wang's avatar
Minjie Wang committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
namespace runtime {

inline void VerifyDataType(DLDataType dtype) {
  CHECK_GE(dtype.lanes, 1);
  if (dtype.code == kDLFloat) {
    CHECK_EQ(dtype.bits % 8, 0);
  } else {
    CHECK_EQ(dtype.bits % 8, 0);
  }
  CHECK_EQ(dtype.bits & (dtype.bits - 1), 0);
}

inline size_t GetDataSize(const DLTensor& arr) {
  size_t size = 1;
33
  for (dgl_index_t i = 0; i < arr.ndim; ++i) {
Minjie Wang's avatar
Minjie Wang committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    size *= arr.shape[i];
  }
  size *= (arr.dtype.bits * arr.dtype.lanes + 7) / 8;
  return size;
}

inline size_t GetDataAlignment(const DLTensor& arr) {
  size_t align = (arr.dtype.bits / 8) * arr.dtype.lanes;
  if (align < kAllocAlignment) return kAllocAlignment;
  return align;
}

struct NDArray::Internal {
  // Default deleter for the container
  static void DefaultDeleter(NDArray::Container* ptr) {
49
    using dgl::runtime::NDArray;
Minjie Wang's avatar
Minjie Wang committed
50
51
    if (ptr->manager_ctx != nullptr) {
      static_cast<NDArray::Container*>(ptr->manager_ctx)->DecRef();
52
53
54
55
#ifndef _WIN32
    } else if (ptr->mem) {
      ptr->mem = nullptr;
#endif  // _WIN32
Minjie Wang's avatar
Minjie Wang committed
56
    } else if (ptr->dl_tensor.data != nullptr) {
57
      dgl::runtime::DeviceAPI::Get(ptr->dl_tensor.ctx)->FreeDataSpace(
Minjie Wang's avatar
Minjie Wang committed
58
59
60
61
62
63
          ptr->dl_tensor.ctx, ptr->dl_tensor.data);
    }
    delete ptr;
  }
  // Deleter for NDArray converted from DLPack
  // This is used from data which is passed from external DLPack(DLManagedTensor)
64
  // that are not allocated inside of DGL.
Minjie Wang's avatar
Minjie Wang committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
  // This enables us to create NDArray from memory allocated by other
  // frameworks that are DLPack compatible
  static void DLPackDeleter(NDArray::Container* ptr) {
    DLManagedTensor* tensor = static_cast<DLManagedTensor*>(ptr->manager_ctx);
    if (tensor->deleter != nullptr) {
      (*tensor->deleter)(tensor);
    }
    delete ptr;
  }
  // Local create function which allocates tensor metadata
  // but does not allocate space for the data.
  static NDArray Create(std::vector<int64_t> shape,
                        DLDataType dtype,
                        DLContext ctx) {
    VerifyDataType(dtype);
    // critical zone
    NDArray::Container* data = new NDArray::Container();
    data->deleter = DefaultDeleter;
    NDArray ret(data);
    ret.data_ = data;
    // RAII now in effect
    // setup shape
    data->shape_ = std::move(shape);
    data->dl_tensor.shape = dmlc::BeginPtr(data->shape_);
    data->dl_tensor.ndim = static_cast<int>(data->shape_.size());
90
91
92
93
94
95
96
    // setup stride (this should be optional, but some framework
    //   does not support NULL stride and thus will crash the program).
    data->stride_.resize(data->dl_tensor.ndim, 1);
    for (int i = data->dl_tensor.ndim - 2; i >= 0; --i) {
      data->stride_[i] = data->shape_[i+1] * data->stride_[i+1];
    }
    data->dl_tensor.strides = dmlc::BeginPtr(data->stride_);
Minjie Wang's avatar
Minjie Wang committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    // setup dtype
    data->dl_tensor.dtype = dtype;
    // setup ctx
    data->dl_tensor.ctx = ctx;
    return ret;
  }
  // Implementation of API function
  static DLTensor* MoveAsDLTensor(NDArray arr) {
    DLTensor* tensor = const_cast<DLTensor*>(arr.operator->());
    CHECK(reinterpret_cast<DLTensor*>(arr.data_) == tensor);
    arr.data_ = nullptr;
    return tensor;
  }
  // Container to DLManagedTensor
  static DLManagedTensor* ToDLPack(NDArray::Container* from) {
    CHECK(from != nullptr);
    DLManagedTensor* ret = new DLManagedTensor();
    ret->dl_tensor = from->dl_tensor;
    ret->manager_ctx = from;
    from->IncRef();
    ret->deleter = NDArrayDLPackDeleter;
    return ret;
  }
};

122
123
124
125
size_t NDArray::GetSize() const {
  return GetDataSize(data_->dl_tensor);
}

126
127
128
129
130
131
132
133
134
135
136
137
bool NDArray::IsContiguous() const {
  CHECK(data_ != nullptr);
  if (data_->dl_tensor.strides == nullptr)
    return true;
  for (int i = 0; i < data_->dl_tensor.ndim - 1; ++i) {
    if (data_->dl_tensor.strides[i] !=
        data_->dl_tensor.shape[i+1] * data_->dl_tensor.strides[i+1])
      return false;
  }
  return data_->dl_tensor.strides[data_->dl_tensor.ndim - 1] == 1;
}

Minjie Wang's avatar
Minjie Wang committed
138
NDArray NDArray::CreateView(std::vector<int64_t> shape,
139
140
                            DLDataType dtype,
                            int64_t offset) {
Minjie Wang's avatar
Minjie Wang committed
141
  CHECK(data_ != nullptr);
142
  CHECK(IsContiguous()) << "Can only create view for compact tensor";
Minjie Wang's avatar
Minjie Wang committed
143
144
145
146
147
148
149
150
151
152
  NDArray ret = Internal::Create(shape, dtype, data_->dl_tensor.ctx);
  ret.data_->dl_tensor.byte_offset =
      this->data_->dl_tensor.byte_offset;
  size_t curr_size = GetDataSize(this->data_->dl_tensor);
  size_t view_size = GetDataSize(ret.data_->dl_tensor);
  CHECK_LE(view_size, curr_size)
      << "Tries to create a view that has bigger memory than current one";
  // increase ref count
  this->data_->IncRef();
  ret.data_->manager_ctx = this->data_;
153
154
  ret.data_->dl_tensor.data =
    static_cast<char*>(this->data_->dl_tensor.data) + offset;
Minjie Wang's avatar
Minjie Wang committed
155
156
157
158
159
160
161
  return ret;
}

DLManagedTensor* NDArray::ToDLPack() const {
  return Internal::ToDLPack(data_);
}

162
163
164
165
166
167
168
169
170
171
NDArray NDArray::EmptyShared(const std::string &name,
                       std::vector<int64_t> shape,
                       DLDataType dtype,
                       DLContext ctx, bool is_create) {
  NDArray ret = Internal::Create(shape, dtype, ctx);
  // setup memory content
  size_t size = GetDataSize(ret.data_->dl_tensor);
#ifndef _WIN32
  auto mem = std::make_shared<SharedMemory>(name);
  if (is_create) {
172
    ret.data_->dl_tensor.data = mem->CreateNew(size);
173
  } else {
174
    ret.data_->dl_tensor.data = mem->Open(size);
175
176
177
178
179
180
181
182
183
  }

  ret.data_->mem = mem;
#else
  LOG(FATAL) << "Windows doesn't support NDArray with shared memory";
#endif  // _WIN32
  return ret;
}

Minjie Wang's avatar
Minjie Wang committed
184
NDArray NDArray::Empty(std::vector<int64_t> shape,
185
186
                       DLDataType dtype,
                       DLContext ctx) {
Minjie Wang's avatar
Minjie Wang committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
  NDArray ret = Internal::Create(shape, dtype, ctx);
  // setup memory content
  size_t size = GetDataSize(ret.data_->dl_tensor);
  size_t alignment = GetDataAlignment(ret.data_->dl_tensor);
  ret.data_->dl_tensor.data =
      DeviceAPI::Get(ret->ctx)->AllocDataSpace(
          ret->ctx, size, alignment, ret->dtype);
  return ret;
}

NDArray NDArray::FromDLPack(DLManagedTensor* tensor) {
  NDArray::Container* data = new NDArray::Container();
  data->deleter = Internal::DLPackDeleter;
  data->manager_ctx = tensor;
  data->dl_tensor = tensor->dl_tensor;
  return NDArray(data);
}

void NDArray::CopyFromTo(DLTensor* from,
                         DLTensor* to,
207
                         DGLStreamHandle stream) {
Minjie Wang's avatar
Minjie Wang committed
208
209
210
  size_t from_size = GetDataSize(*from);
  size_t to_size = GetDataSize(*to);
  CHECK_EQ(from_size, to_size)
211
    << "DGLArrayCopyFromTo: The size must exactly match";
Minjie Wang's avatar
Minjie Wang committed
212
213
214
215
216
217
218
219

  CHECK(from->ctx.device_type == to->ctx.device_type
        || from->ctx.device_type == kDLCPU
        || to->ctx.device_type == kDLCPU)
    << "Can not copy across different ctx types directly";

  // Use the context that is *not* a cpu context to get the correct device
  // api manager.
220
  DGLContext ctx = from->ctx.device_type != kDLCPU ? from->ctx : to->ctx;
Minjie Wang's avatar
Minjie Wang committed
221
222
223
224
225
226
227

  DeviceAPI::Get(ctx)->CopyDataFromTo(
    from->data, static_cast<size_t>(from->byte_offset),
    to->data, static_cast<size_t>(to->byte_offset),
    from_size, from->ctx, to->ctx, from->dtype, stream);
}

228
template<typename T>
229
230
NDArray NDArray::FromVector(const std::vector<T>& vec, DLContext ctx) {
  const DLDataType dtype = DLDataTypeTraits<T>::dtype;
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
  int64_t size = static_cast<int64_t>(vec.size());
  NDArray ret = NDArray::Empty({size}, dtype, DLContext{kDLCPU, 0});
  DeviceAPI::Get(ctx)->CopyDataFromTo(
      vec.data(),
      0,
      static_cast<T*>(ret->data),
      0,
      size * sizeof(T),
      DLContext{kDLCPU, 0},
      ctx,
      dtype,
      nullptr);
  return ret;
}

// export specializations
247
248
249
250
251
252
template NDArray NDArray::FromVector<int32_t>(const std::vector<int32_t>&, DLContext);
template NDArray NDArray::FromVector<int64_t>(const std::vector<int64_t>&, DLContext);
template NDArray NDArray::FromVector<uint32_t>(const std::vector<uint32_t>&, DLContext);
template NDArray NDArray::FromVector<uint64_t>(const std::vector<uint64_t>&, DLContext);
template NDArray NDArray::FromVector<float>(const std::vector<float>&, DLContext);
template NDArray NDArray::FromVector<double>(const std::vector<double>&, DLContext);
253

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
template<typename T>
std::vector<T> NDArray::ToVector() const {
  const DLDataType dtype = DLDataTypeTraits<T>::dtype;
  CHECK(data_->dl_tensor.ndim == 1) << "ToVector() only supported for 1D arrays";
  CHECK(data_->dl_tensor.dtype == dtype) << "dtype mismatch";

  int64_t size = data_->dl_tensor.shape[0];
  std::vector<T> vec(size);
  const DLContext &ctx = data_->dl_tensor.ctx;
  DeviceAPI::Get(ctx)->CopyDataFromTo(
      static_cast<T*>(data_->dl_tensor.data),
      0,
      vec.data(),
      0,
      size * sizeof(T),
      ctx,
      DLContext{kDLCPU, 0},
      dtype,
      nullptr);
  return vec;
}

template std::vector<int32_t> NDArray::ToVector<int32_t>() const;
template std::vector<int64_t> NDArray::ToVector<int64_t>() const;
template std::vector<uint32_t> NDArray::ToVector<uint32_t>() const;
template std::vector<uint64_t> NDArray::ToVector<uint64_t>() const;
template std::vector<float> NDArray::ToVector<float>() const;
template std::vector<double> NDArray::ToVector<double>() const;
282

283
284
285
286
287
288
289
290
#ifndef _WIN32
std::shared_ptr<SharedMemory> NDArray::GetSharedMem() const {
  return this->data_->mem;
}
#endif  // _WIN32


void NDArray::Save(dmlc::Stream* strm) const {
291
  auto zc_strm = dynamic_cast<StreamWithBuffer*>(strm);
292
293
294
295
296
297
298
299
  if (zc_strm) {
    zc_strm->PushNDArray(*this);
    return;
  }
  SaveDLTensor(strm, const_cast<DLTensor*>(operator->()));
}

bool NDArray::Load(dmlc::Stream* strm) {
300
  auto zc_strm = dynamic_cast<StreamWithBuffer*>(strm);
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
  if (zc_strm) {
    *this = zc_strm->PopNDArray();
    return true;
  }
  uint64_t header, reserved;
  CHECK(strm->Read(&header))
      << "Invalid DLTensor file format";
  CHECK(strm->Read(&reserved))
      << "Invalid DLTensor file format";
  CHECK(header == kDGLNDArrayMagic)
      << "Invalid DLTensor file format";
  DLContext ctx;
  int ndim;
  DLDataType dtype;
  CHECK(strm->Read(&ctx))
      << "Invalid DLTensor file format";
  CHECK(strm->Read(&ndim))
      << "Invalid DLTensor file format";
  CHECK(strm->Read(&dtype))
      << "Invalid DLTensor file format";
  CHECK_EQ(ctx.device_type, kDLCPU)
      << "Invalid DLTensor context: can only save as CPU tensor";
  std::vector<int64_t> shape(ndim);
  if (ndim != 0) {
    CHECK(strm->ReadArray(&shape[0], ndim))
        << "Invalid DLTensor file format";
  }
  NDArray ret = NDArray::Empty(shape, dtype, ctx);
  int64_t num_elems = 1;
  int elem_bytes = (ret->dtype.bits + 7) / 8;
  for (int i = 0; i < ret->ndim; ++i) {
    num_elems *= ret->shape[i];
  }
  int64_t data_byte_size;
  CHECK(strm->Read(&data_byte_size))
      << "Invalid DLTensor file format";
  CHECK(data_byte_size == num_elems * elem_bytes)
      << "Invalid DLTensor file format";
  if (data_byte_size != 0)  {
    // strm->Read will return the total number of elements successfully read.
    // Therefore if data_byte_size is zero, the CHECK below would fail.
    CHECK(strm->Read(ret->data, data_byte_size))
        << "Invalid DLTensor file format";
  }
  if (!DMLC_IO_NO_ENDIAN_SWAP) {
    dmlc::ByteSwap(ret->data, elem_bytes, num_elems);
  }
  *this = ret;
  return true;
}


Minjie Wang's avatar
Minjie Wang committed
353
}  // namespace runtime
354
}  // namespace dgl
Minjie Wang's avatar
Minjie Wang committed
355

356
using namespace dgl::runtime;
Minjie Wang's avatar
Minjie Wang committed
357
358
359
360
361
362

void NDArrayDLPackDeleter(DLManagedTensor* tensor) {
  static_cast<NDArray::Container*>(tensor->manager_ctx)->DecRef();
  delete tensor;
}

363
int DGLArrayAlloc(const dgl_index_t* shape,
Minjie Wang's avatar
Minjie Wang committed
364
365
366
367
368
369
                  int ndim,
                  int dtype_code,
                  int dtype_bits,
                  int dtype_lanes,
                  int device_type,
                  int device_id,
370
                  DGLArrayHandle* out) {
Minjie Wang's avatar
Minjie Wang committed
371
372
373
374
375
376
377
378
379
380
381
382
383
  API_BEGIN();
  DLDataType dtype;
  dtype.code = static_cast<uint8_t>(dtype_code);
  dtype.bits = static_cast<uint8_t>(dtype_bits);
  dtype.lanes = static_cast<uint16_t>(dtype_lanes);
  DLContext ctx;
  ctx.device_type = static_cast<DLDeviceType>(device_type);
  ctx.device_id = device_id;
  *out = NDArray::Internal::MoveAsDLTensor(
      NDArray::Empty(std::vector<int64_t>(shape, shape + ndim), dtype, ctx));
  API_END();
}

384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
int DGLArrayAllocSharedMem(const char *mem_name,
                           const dgl_index_t *shape,
                           int ndim,
                           int dtype_code,
                           int dtype_bits,
                           int dtype_lanes,
                           bool is_create,
                           DGLArrayHandle* out) {
  API_BEGIN();
  DLDataType dtype;
  dtype.code = static_cast<uint8_t>(dtype_code);
  dtype.bits = static_cast<uint8_t>(dtype_bits);
  dtype.lanes = static_cast<uint16_t>(dtype_lanes);
  std::vector<int64_t> shape_vec(shape, shape + ndim);
  NDArray arr = NDArray::EmptyShared(mem_name, shape_vec, dtype,
                                     DLContext{kDLCPU, 0}, is_create);
  *out = NDArray::Internal::MoveAsDLTensor(arr);
  API_END();
}

404
int DGLArrayFree(DGLArrayHandle handle) {
Minjie Wang's avatar
Minjie Wang committed
405
406
407
408
409
  API_BEGIN();
  reinterpret_cast<NDArray::Container*>(handle)->DecRef();
  API_END();
}

410
411
412
int DGLArrayCopyFromTo(DGLArrayHandle from,
                       DGLArrayHandle to,
                       DGLStreamHandle stream) {
Minjie Wang's avatar
Minjie Wang committed
413
414
415
416
417
  API_BEGIN();
  NDArray::CopyFromTo(from, to, stream);
  API_END();
}

418
419
int DGLArrayFromDLPack(DLManagedTensor* from,
                       DGLArrayHandle* out) {
Minjie Wang's avatar
Minjie Wang committed
420
421
422
423
424
  API_BEGIN();
  *out = NDArray::Internal::MoveAsDLTensor(NDArray::FromDLPack(from));
  API_END();
}

425
426
427
428
429
430
431
inline bool is_aligned(const void* ptr, std::uintptr_t alignment) noexcept {
  auto iptr = reinterpret_cast<std::uintptr_t>(ptr);
  return !(iptr % alignment);
}

int DGLArrayToDLPack(DGLArrayHandle from, DLManagedTensor** out,
                     int alignment) {
Minjie Wang's avatar
Minjie Wang committed
432
  API_BEGIN();
433
434
435
436
437
438
439
440
441
442
  auto* nd_container = reinterpret_cast<NDArray::Container*>(from);
  DLTensor* nd = &(nd_container->dl_tensor);
  if (alignment != 0 && !is_aligned(nd->data, alignment)) {
    std::vector<int64_t> shape_vec(nd->shape, nd->shape + nd->ndim);
    NDArray copy_ndarray = NDArray::Empty(shape_vec, nd->dtype, nd->ctx);
    copy_ndarray.CopyFrom(nd);
    *out = copy_ndarray.ToDLPack();
  } else {
    *out = NDArray::Internal::ToDLPack(nd_container);
  }
Minjie Wang's avatar
Minjie Wang committed
443
444
445
  API_END();
}

446
void DGLDLManagedTensorCallDeleter(DLManagedTensor* dltensor) {
Minjie Wang's avatar
Minjie Wang committed
447
448
449
  (*(dltensor->deleter))(dltensor);
}

450
int DGLArrayCopyFromBytes(DGLArrayHandle handle,
Minjie Wang's avatar
Minjie Wang committed
451
452
453
                          void* data,
                          size_t nbytes) {
  API_BEGIN();
454
  DGLContext cpu_ctx;
Minjie Wang's avatar
Minjie Wang committed
455
456
457
458
  cpu_ctx.device_type = kDLCPU;
  cpu_ctx.device_id = 0;
  size_t arr_size = GetDataSize(*handle);
  CHECK_EQ(arr_size, nbytes)
459
      << "DGLArrayCopyFromBytes: size mismatch";
Minjie Wang's avatar
Minjie Wang committed
460
461
462
463
464
465
466
  DeviceAPI::Get(handle->ctx)->CopyDataFromTo(
      data, 0,
      handle->data, static_cast<size_t>(handle->byte_offset),
      nbytes, cpu_ctx, handle->ctx, handle->dtype, nullptr);
  API_END();
}

467
int DGLArrayCopyToBytes(DGLArrayHandle handle,
Minjie Wang's avatar
Minjie Wang committed
468
469
470
                        void* data,
                        size_t nbytes) {
  API_BEGIN();
471
  DGLContext cpu_ctx;
Minjie Wang's avatar
Minjie Wang committed
472
473
474
475
  cpu_ctx.device_type = kDLCPU;
  cpu_ctx.device_id = 0;
  size_t arr_size = GetDataSize(*handle);
  CHECK_EQ(arr_size, nbytes)
476
      << "DGLArrayCopyToBytes: size mismatch";
Minjie Wang's avatar
Minjie Wang committed
477
478
479
480
481
482
  DeviceAPI::Get(handle->ctx)->CopyDataFromTo(
      handle->data, static_cast<size_t>(handle->byte_offset),
      data, 0,
      nbytes, handle->ctx, cpu_ctx, handle->dtype, nullptr);
  API_END();
}