node_classification.py 12.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
"""
This script trains and tests a GraphSAGE model for node classification
on large graphs using GraphBolt dataloader.

Paper: [Inductive Representation Learning on Large Graphs]
(https://arxiv.org/abs/1706.02216)

Unlike previous dgl examples, we've utilized the newly defined dataloader
from GraphBolt. This example will help you grasp how to build an end-to-end
training pipeline using GraphBolt.

Before reading this example, please familiar yourself with graphsage node
classification by reading the example in the
`examples/core/graphsage/node_classification.py`. This introduction,
[A Blitz Introduction to Node Classification with DGL]
(https://docs.dgl.ai/tutorials/blitz/1_introduction.html), might be helpful.

If you want to train graphsage on a large graph in a distributed fashion,
please read the example in the `examples/distributed/graphsage/`.

This flowchart describes the main functional sequence of the provided example:
main

├───> OnDiskDataset pre-processing

├───> Instantiate SAGE model

├───> train
│     │
│     ├───> Get graphbolt dataloader (HIGHLIGHT)
│     │
│     └───> Training loop
│           │
│           ├───> SAGE.forward
│           │
│           └───> Validation set evaluation

38
└───> All nodes set inference & Test set evaluation
39
40
41
"""
import argparse

42
43
from typing import Literal

44
45
46
47
48
49
50
51
52
import dgl.graphbolt as gb
import dgl.nn as dglnn
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchmetrics.functional as MF
import tqdm


53
54
55
def create_dataloader(
    args, graph, features, itemset, job: Literal["train", "evaluate", "infer"]
):
56
57
58
59
60
61
    """
    [HIGHLIGHT]
    Get a GraphBolt version of a dataloader for node classification tasks.
    This function demonstrates how to utilize functional forms of datapipes in
    GraphBolt.
    Alternatively, you can create a datapipe using its class constructor.
62
63
64
65
66
67
68
69
70
71
72
73
74
75

    Parameters
    ----------
    args : Namespace
        The arguments parsed by `parser.parse_args()`.
    graph : SamplingGraph
        The network topology for sampling.
    features : FeatureStore
        The node features.
    itemset : Union[ItemSet, ItemSetDict]
        Data to be sampled.
    job : Literal["train", "evaluate", "infer"]
        The stage where dataloader is created, with options "train", "evaluate"
        and "infer".
76
77
78
79
80
81
82
83
84
85
86
    """

    ############################################################################
    # [Step-1]:
    # gb.ItemSampler()
    # [Input]:
    # 'itemset': The current dataset. (e.g. `train_set` or `valid_set`)
    # 'args.batch_size': Specify the number of samples to be processed together,
    # referred to as a 'mini-batch'. (The term 'mini-batch' is used here to
    # indicate a subset of the entire dataset that is processed together. This
    # is in contrast to processing the entire dataset, known as a 'full batch'.)
87
    # 'job': Determines whether data should be shuffled. (Shuffling is
88
89
90
91
92
93
94
95
96
    # generally used only in training to improve model generalization. It's
    # not used in validation and testing as the focus there is to evaluate
    # performance rather than to learn from the data.)
    # [Output]:
    # An ItemSampler object for handling mini-batch sampling.
    # [Role]:
    # Initialize the ItemSampler to sample mini-batche from the dataset.
    ############################################################################
    datapipe = gb.ItemSampler(
97
        itemset, batch_size=args.batch_size, shuffle=(job == "train")
98
99
100
101
102
103
104
    )

    ############################################################################
    # [Step-2]:
    # self.sample_neighbor()
    # [Input]:
    # 'graph': The network topology for sampling.
105
106
107
108
    # '[-1] or args.fanout': Number of neighbors to sample per node. In
    # training or validation, the length of args.fanout should be equal to the
    # number of layers in the model. In inference, this parameter is set to
    # [-1], indicating that all neighbors of a node are sampled.
109
110
111
112
113
    # [Output]:
    # A NeighborSampler object to sample neighbors.
    # [Role]:
    # Initialize a neighbor sampler for sampling the neighborhoods of nodes.
    ############################################################################
114
115
116
    datapipe = datapipe.sample_neighbor(
        graph, args.fanout if job != "infer" else [-1]
    )
117
118
119
120
121
122
123
124
125
126
127

    ############################################################################
    # [Step-3]:
    # self.fetch_feature()
    # [Input]:
    # 'features': The node features.
    # 'node_feature_keys': The keys of the node features to be fetched.
    # [Output]:
    # A FeatureFetcher object to fetch node features.
    # [Role]:
    # Initialize a feature fetcher for fetching features of the sampled
128
129
    # subgraphs. This step is skipped in inference because features are updated
    # as a whole during it, thus storing features in minibatch is unnecessary.
130
    ############################################################################
131
132
    if job != "infer":
        datapipe = datapipe.fetch_feature(features, node_feature_keys=["feat"])
133
134
135

    ############################################################################
    # [Step-4]:
136
137
138
139
140
141
142
143
144
145
146
147
    # self.to_dgl()
    # [Input]:
    # 'datapipe': The previous datapipe object.
    # [Output]:
    # A DGLMiniBatch used for computing.
    # [Role]:
    # Convert a mini-batch to dgl-minibatch.
    ############################################################################
    datapipe = datapipe.to_dgl()

    ############################################################################
    # [Step-5]:
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    # gb.MultiProcessDataLoader()
    # [Input]:
    # 'datapipe': The datapipe object to be used for data loading.
    # 'args.num_workers': The number of processes to be used for data loading.
    # [Output]:
    # A MultiProcessDataLoader object to handle data loading.
    # [Role]:
    # Initialize a multi-process dataloader to load the data in parallel.
    ############################################################################
    dataloader = gb.MultiProcessDataLoader(
        datapipe, num_workers=args.num_workers
    )

    # Return the fully-initialized DataLoader object.
    return dataloader


165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
class SAGE(nn.Module):
    def __init__(self, in_size, hidden_size, out_size):
        super().__init__()
        self.layers = nn.ModuleList()
        # Three-layer GraphSAGE-mean.
        self.layers.append(dglnn.SAGEConv(in_size, hidden_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hidden_size, hidden_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hidden_size, out_size, "mean"))
        self.dropout = nn.Dropout(0.5)
        self.hidden_size = hidden_size
        self.out_size = out_size
        # Set the dtype for the layers manually.
        self.set_layer_dtype(torch.float64)

    def set_layer_dtype(self, _dtype):
        for layer in self.layers:
            for param in layer.parameters():
                param.data = param.data.to(_dtype)

    def forward(self, blocks, x):
        hidden_x = x
        for layer_idx, (layer, block) in enumerate(zip(self.layers, blocks)):
            hidden_x = layer(block, hidden_x)
            is_last_layer = layer_idx == len(self.layers) - 1
            if not is_last_layer:
                hidden_x = F.relu(hidden_x)
                hidden_x = self.dropout(hidden_x)
        return hidden_x

    def inference(self, graph, features, dataloader):
        """Conduct layer-wise inference to get all the node embeddings."""
        feature = features.read("node", None, "feat")

        for layer_idx, layer in enumerate(self.layers):
            is_last_layer = layer_idx == len(self.layers) - 1

            y = torch.empty(
                graph.total_num_nodes,
                self.out_size if is_last_layer else self.hidden_size,
                dtype=torch.float64,
            )

            for step, data in tqdm.tqdm(enumerate(dataloader)):
                x = feature[data.input_nodes]
                hidden_x = layer(data.blocks[0], x)  # len(blocks) = 1
                if not is_last_layer:
                    hidden_x = F.relu(hidden_x)
                    hidden_x = self.dropout(hidden_x)
                # By design, our output nodes are contiguous.
                y[data.output_nodes[0] : data.output_nodes[-1] + 1] = hidden_x
            feature = y

        return y


@torch.no_grad()
def layerwise_infer(
    args, graph, features, test_set, all_nodes_set, model, num_classes
):
    model.eval()
    dataloader = create_dataloader(
        args, graph, features, all_nodes_set, job="infer"
    )
    pred = model.inference(graph, features, dataloader)
    pred = pred[test_set._items[0]]
    label = test_set._items[1].to(pred.device)

    return MF.accuracy(
        pred,
        label,
        task="multiclass",
        num_classes=num_classes,
    )


240
241
242
243
244
245
@torch.no_grad()
def evaluate(args, model, graph, features, itemset, num_classes):
    model.eval()
    y = []
    y_hats = []
    dataloader = create_dataloader(
246
        args, graph, features, itemset, job="evaluate"
247
248
249
250
251
    )

    for step, data in tqdm.tqdm(enumerate(dataloader)):
        x = data.node_features["feat"]
        y.append(data.labels)
252
        y_hats.append(model(data.blocks, x))
253

254
    return MF.accuracy(
255
256
257
258
259
260
261
262
263
264
        torch.cat(y_hats),
        torch.cat(y),
        task="multiclass",
        num_classes=num_classes,
    )


def train(args, graph, features, train_set, valid_set, num_classes, model):
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
    dataloader = create_dataloader(
265
        args, graph, features, train_set, job="train"
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    )

    for epoch in tqdm.trange(args.epochs):
        model.train()
        total_loss = 0
        for step, data in tqdm.tqdm(enumerate(dataloader)):
            # The input features from the source nodes in the first layer's
            # computation graph.
            x = data.node_features["feat"]

            # The ground truth labels from the destination nodes
            # in the last layer's computation graph.
            y = data.labels

280
            y_hat = model(data.blocks, x)
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

            # Compute loss.
            loss = F.cross_entropy(y_hat, y)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            total_loss += loss.item()

        # Evaluate the model.
        acc = evaluate(args, model, graph, features, valid_set, num_classes)
        print(
            f"Epoch {epoch:05d} | Loss {total_loss / (step + 1):.4f} | "
            f"Accuracy {acc.item():.4f} "
        )


def parse_args():
    parser = argparse.ArgumentParser(
        description="A script trains and tests a GraphSAGE model "
        "for node classification using GraphBolt dataloader."
    )
    parser.add_argument(
        "--epochs", type=int, default=10, help="Number of training epochs."
    )
    parser.add_argument(
        "--lr",
        type=float,
        default=0.0005,
        help="Learning rate for optimization.",
    )
    parser.add_argument(
        "--batch-size", type=int, default=256, help="Batch size for training."
    )
    parser.add_argument(
        "--num-workers",
        type=int,
        default=4,
        help="Number of workers for data loading.",
    )
    parser.add_argument(
        "--fanout",
        type=str,
        default="15,10,5",
        help="Fan-out of neighbor sampling. It is IMPORTANT to keep len(fanout)"
        " identical with the number of layers in your model. Default: 15,10,5",
    )
    return parser.parse_args()


def main(args):
    # Load and preprocess dataset.
    dataset = gb.BuiltinDataset("ogbn-products").load()

    graph = dataset.graph
    features = dataset.feature
    train_set = dataset.tasks[0].train_set
    valid_set = dataset.tasks[0].validation_set
340
341
    test_set = dataset.tasks[0].test_set
    all_nodes_set = dataset.all_nodes_set
342
343
344
345
    args.fanout = list(map(int, args.fanout.split(",")))

    num_classes = dataset.tasks[0].metadata["num_classes"]

346
    in_size = features.size("node", None, "feat")[0]
347
348
349
350
351
352
353
354
355
356
357
    hidden_size = 128
    out_size = num_classes

    model = SAGE(in_size, hidden_size, out_size)

    # Model training.
    print("Training...")
    train(args, graph, features, train_set, valid_set, num_classes, model)

    # Test the model.
    print("Testing...")
358
359
360
361
362
363
364
365
    test_acc = layerwise_infer(
        args,
        graph,
        features,
        test_set,
        all_nodes_set,
        model,
        num_classes,
366
367
368
369
370
371
372
    )
    print(f"Test Accuracy is {test_acc.item():.4f}")


if __name__ == "__main__":
    args = parse_args()
    main(args)