modules.py 1.45 KB
Newer Older
xnouhz's avatar
xnouhz committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch
import torch.nn as nn
import torch.nn.functional as F


class MLP(nn.Sequential):
    r"""

    Description
    -----------
    From equation (5) in "DeeperGCN: All You Need to Train Deeper GCNs <https://arxiv.org/abs/2006.07739>"
    """
    def __init__(self,
                 channels,
                 act='relu',
                 dropout=0.,
                 bias=True):
        layers = []
        
        for i in range(1, len(channels)):
            layers.append(nn.Linear(channels[i - 1], channels[i], bias))
            if i < len(channels) - 1:
                layers.append(nn.BatchNorm1d(channels[i], affine=True))
                layers.append(nn.ReLU())
                layers.append(nn.Dropout(dropout))
        
        super(MLP, self).__init__(*layers)


class MessageNorm(nn.Module):
    r"""
    
    Description
    -----------
    Message normalization was introduced in "DeeperGCN: All You Need to Train Deeper GCNs <https://arxiv.org/abs/2006.07739>"

    Parameters
    ----------
    learn_scale: bool
        Whether s is a learnable scaling factor or not. Default is False.
    """
    def __init__(self, learn_scale=False):
        super(MessageNorm, self).__init__()
        self.scale = nn.Parameter(torch.FloatTensor([1.0]), requires_grad=learn_scale)

    def forward(self, feats, msg, p=2):
        msg = F.normalize(msg, p=2, dim=-1)
        feats_norm = feats.norm(p=p, dim=-1, keepdim=True)
        return msg * feats_norm * self.scale