general_models.py 9.28 KB
Newer Older
1
2
3
4
import os
import numpy as np
import dgl.backend as F

Da Zheng's avatar
Da Zheng committed
5
backend = os.environ.get('DGLBACKEND', 'pytorch')
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
if backend.lower() == 'mxnet':
    from .mxnet.tensor_models import logsigmoid
    from .mxnet.tensor_models import get_device
    from .mxnet.tensor_models import norm
    from .mxnet.tensor_models import get_scalar
    from .mxnet.tensor_models import reshape
    from .mxnet.tensor_models import cuda
    from .mxnet.tensor_models import ExternalEmbedding
    from .mxnet.score_fun import *
else:
    from .pytorch.tensor_models import logsigmoid
    from .pytorch.tensor_models import get_device
    from .pytorch.tensor_models import norm
    from .pytorch.tensor_models import get_scalar
    from .pytorch.tensor_models import reshape
    from .pytorch.tensor_models import cuda
    from .pytorch.tensor_models import ExternalEmbedding
    from .pytorch.score_fun import *

class KEModel(object):
    def __init__(self, args, model_name, n_entities, n_relations, hidden_dim, gamma,
                 double_entity_emb=False, double_relation_emb=False):
        super(KEModel, self).__init__()
        self.args = args
        self.n_entities = n_entities
        self.model_name = model_name
        self.hidden_dim = hidden_dim
        self.eps = 2.0
        self.emb_init = (gamma + self.eps) / hidden_dim

        entity_dim = 2 * hidden_dim if double_entity_emb else hidden_dim
        relation_dim = 2 * hidden_dim if double_relation_emb else hidden_dim

        device = get_device(args)
        self.entity_emb = ExternalEmbedding(args, n_entities, entity_dim,
                                            F.cpu() if args.mix_cpu_gpu else device)
        # For RESCAL, relation_emb = relation_dim * entity_dim
        if model_name == 'RESCAL':
            rel_dim = relation_dim * entity_dim
        else:
            rel_dim = relation_dim
        self.relation_emb = ExternalEmbedding(args, n_relations, rel_dim, device)

49
50
51
52
        if model_name == 'TransE' or model_name == 'TransE_l2':
            self.score_func = TransEScore(gamma, 'l2')
        elif model_name == 'TransE_l1':
            self.score_func = TransEScore(gamma, 'l1')
53
54
55
56
        elif model_name == 'TransR':
            projection_emb = ExternalEmbedding(args, n_relations, entity_dim * relation_dim,
                                               F.cpu() if args.mix_cpu_gpu else device)
            self.score_func = TransRScore(gamma, projection_emb, relation_dim, entity_dim)
57
58
59
60
        elif model_name == 'DistMult':
            self.score_func = DistMultScore()
        elif model_name == 'ComplEx':
            self.score_func = ComplExScore()
61
62
        elif model_name == 'RESCAL':
            self.score_func = RESCALScore(relation_dim, entity_dim)
63
64
65
        elif model_name == 'RotatE':
            self.score_func = RotatEScore(gamma, self.emb_init)
        
66
67
        self.head_neg_score = self.score_func.create_neg(True)
        self.tail_neg_score = self.score_func.create_neg(False)
68
69
        self.head_neg_prepare = self.score_func.create_neg_prepare(True)
        self.tail_neg_prepare = self.score_func.create_neg_prepare(False)
70
71
72
73
74
75
76
77
78
79
80

        self.reset_parameters()

    def share_memory(self):
        # TODO(zhengda) we should make it work for parameters in score func
        self.entity_emb.share_memory()
        self.relation_emb.share_memory()

    def save_emb(self, path, dataset):
        self.entity_emb.save(path, dataset+'_'+self.model_name+'_entity')
        self.relation_emb.save(path, dataset+'_'+self.model_name+'_relation')
81
        self.score_func.save(path, dataset+'_'+self.model_name)
82
83
84
85

    def load_emb(self, path, dataset):
        self.entity_emb.load(path, dataset+'_'+self.model_name+'_entity')
        self.relation_emb.load(path, dataset+'_'+self.model_name+'_relation')
86
        self.score_func.load(path, dataset+'_'+self.model_name)
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

    def reset_parameters(self):
        self.entity_emb.init(self.emb_init)
        self.relation_emb.init(self.emb_init)
        self.score_func.reset_parameters()

    def predict_score(self, g):
        self.score_func(g)
        return g.edata['score']

    def predict_neg_score(self, pos_g, neg_g, to_device=None, gpu_id=-1, trace=False):
        num_chunks = neg_g.num_chunks
        chunk_size = neg_g.chunk_size
        neg_sample_size = neg_g.neg_sample_size
        if neg_g.neg_head:
            neg_head_ids = neg_g.ndata['id'][neg_g.head_nid]
            neg_head = self.entity_emb(neg_head_ids, gpu_id, trace)
            _, tail_ids = pos_g.all_edges(order='eid')
            if to_device is not None and gpu_id >= 0:
                tail_ids = to_device(tail_ids, gpu_id)
            tail = pos_g.ndata['emb'][tail_ids]
            rel = pos_g.edata['emb']
109
110

            neg_head, tail = self.head_neg_prepare(pos_g.edata['id'], num_chunks, neg_head, tail, gpu_id, trace)
111
112
113
114
115
116
117
118
119
120
            neg_score = self.head_neg_score(neg_head, rel, tail,
                                            num_chunks, chunk_size, neg_sample_size)
        else:
            neg_tail_ids = neg_g.ndata['id'][neg_g.tail_nid]
            neg_tail = self.entity_emb(neg_tail_ids, gpu_id, trace)
            head_ids, _ = pos_g.all_edges(order='eid')
            if to_device is not None and gpu_id >= 0:
                head_ids = to_device(head_ids, gpu_id)
            head = pos_g.ndata['emb'][head_ids]
            rel = pos_g.edata['emb']
121
122

            head, neg_tail = self.tail_neg_prepare(pos_g.edata['id'], num_chunks, head, neg_tail, gpu_id, trace)
123
124
125
126
127
128
129
130
131
            neg_score = self.tail_neg_score(head, rel, neg_tail,
                                            num_chunks, chunk_size, neg_sample_size)

        return neg_score

    def forward_test(self, pos_g, neg_g, logs, gpu_id=-1):
        pos_g.ndata['emb'] = self.entity_emb(pos_g.ndata['id'], gpu_id, False)
        pos_g.edata['emb'] = self.relation_emb(pos_g.edata['id'], gpu_id, False)

132
133
        self.score_func.prepare(pos_g, gpu_id, False)

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
        batch_size = pos_g.number_of_edges()
        pos_scores = self.predict_score(pos_g)
        pos_scores = reshape(logsigmoid(pos_scores), batch_size, -1)

        neg_scores = self.predict_neg_score(pos_g, neg_g, to_device=cuda,
                                            gpu_id=gpu_id, trace=False)
        neg_scores = reshape(logsigmoid(neg_scores), batch_size, -1)

        # We need to filter the positive edges in the negative graph.
        filter_bias = reshape(neg_g.edata['bias'], batch_size, -1)
        if self.args.gpu >= 0:
            filter_bias = cuda(filter_bias, self.args.gpu)
        neg_scores += filter_bias
        # To compute the rank of a positive edge among all negative edges,
        # we need to know how many negative edges have higher scores than
        # the positive edge.
        rankings = F.sum(neg_scores > pos_scores, dim=1) + 1
        rankings = F.asnumpy(rankings)
        for i in range(batch_size):
            ranking = rankings[i]
            logs.append({
                'MRR': 1.0 / ranking,
                'MR': float(ranking),
                'HITS@1': 1.0 if ranking <= 1 else 0.0,
                'HITS@3': 1.0 if ranking <= 3 else 0.0,
                'HITS@10': 1.0 if ranking <= 10 else 0.0
            })

    # @profile
    def forward(self, pos_g, neg_g, gpu_id=-1):
        pos_g.ndata['emb'] = self.entity_emb(pos_g.ndata['id'], gpu_id, True)
        pos_g.edata['emb'] = self.relation_emb(pos_g.edata['id'], gpu_id, True)

167
168
        self.score_func.prepare(pos_g, gpu_id, True)

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
        pos_score = self.predict_score(pos_g)
        pos_score = logsigmoid(pos_score)
        if gpu_id >= 0:
            neg_score = self.predict_neg_score(pos_g, neg_g, to_device=cuda,
                                               gpu_id=gpu_id, trace=True)
        else:
            neg_score = self.predict_neg_score(pos_g, neg_g, trace=True)

        neg_score = reshape(neg_score, -1, neg_g.neg_sample_size)
        # Adversarial sampling
        if self.args.neg_adversarial_sampling:
            neg_score = F.sum(F.softmax(neg_score * self.args.adversarial_temperature, dim=1).detach()
                         * logsigmoid(-neg_score), dim=1)
        else:
            neg_score = F.mean(logsigmoid(-neg_score), dim=1)

        # subsampling weight
        # TODO: add subsampling to new sampler
        if self.args.non_uni_weight:
            subsampling_weight = pos_g.edata['weight']
            pos_score = (pos_score * subsampling_weight).sum() / subsampling_weight.sum()
            neg_score = (neg_score * subsampling_weight).sum() / subsampling_weight.sum()
        else:
            pos_score = pos_score.mean()
            neg_score = neg_score.mean()

        # compute loss
        loss = -(pos_score + neg_score) / 2

        log = {'pos_loss': - get_scalar(pos_score),
               'neg_loss': - get_scalar(neg_score),
               'loss': get_scalar(loss)}

        # regularization: TODO(zihao)
        #TODO: only reg ent&rel embeddings. other params to be added.
        if self.args.regularization_coef > 0.0 and self.args.regularization_norm > 0:
            coef, nm = self.args.regularization_coef, self.args.regularization_norm
            reg = coef * (norm(self.entity_emb.curr_emb(), nm) + norm(self.relation_emb.curr_emb(), nm))
            log['regularization'] = get_scalar(reg)
            loss = loss + reg

        return loss, log

    def update(self):
        self.entity_emb.update()
        self.relation_emb.update()
215
        self.score_func.update()