test_function.py 5.04 KB
Newer Older
1
2
3
4
5
6
7
import torch as th
import dgl
import dgl.function as fn
from dgl.graph import __REPR__

def generate_graph():
    g = dgl.DGLGraph()
Minjie Wang's avatar
Minjie Wang committed
8
    g.add_nodes(10) # 10 nodes.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
    h = th.arange(1, 11)
    g.set_n_repr({'h': h})
    # create a graph where 0 is the source and 9 is the sink
    for i in range(1, 9):
        g.add_edge(0, i)
        g.add_edge(i, 9)
    # add a back flow from 9 to 0
    g.add_edge(9, 0)
    h = th.tensor([1., 2., 1., 3., 1., 4., 1., 5., 1., 6.,\
            1., 7., 1., 8., 1., 9., 10.])
    g.set_e_repr({'h' : h})
    return g

def generate_graph1():
    """graph with anonymous repr"""
    g = dgl.DGLGraph()
Minjie Wang's avatar
Minjie Wang committed
25
    g.add_nodes(10) # 10 nodes.
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
    h = th.arange(1, 11)
    g.set_n_repr(h)
    # create a graph where 0 is the source and 9 is the sink
    for i in range(1, 9):
        g.add_edge(0, i)
        g.add_edge(i, 9)
    # add a back flow from 9 to 0
    g.add_edge(9, 0)
    h = th.tensor([1., 2., 1., 3., 1., 4., 1., 5., 1., 6.,\
            1., 7., 1., 8., 1., 9., 10.])
    g.set_e_repr(h)
    return g

def reducer_msg(node, msgs):
    return th.sum(msgs['m'], 1)

def reducer_out(node, msgs):
    return {'h' : th.sum(msgs, 1)}

def reducer_both(node, msgs):
    return {'h' : th.sum(msgs['m'], 1)}

def reducer_none(node, msgs):
    return th.sum(msgs, 1)

def test_copy_src():
    # copy_src with both fields
    g = generate_graph()
Minjie Wang's avatar
Minjie Wang committed
54
55
    g.register_message_func(fn.copy_src(src='h', out='m'))
    g.register_reduce_func(reducer_both)
56
57
58
59
60
61
    g.update_all()
    assert th.allclose(g.get_n_repr()['h'],
            th.tensor([10., 1., 1., 1., 1., 1., 1., 1., 1., 44.]))

    # copy_src with only src field; the out field should use anonymous repr
    g = generate_graph()
Minjie Wang's avatar
Minjie Wang committed
62
63
    g.register_message_func(fn.copy_src(src='h'))
    g.register_reduce_func(reducer_out)
64
65
66
67
68
69
    g.update_all()
    assert th.allclose(g.get_n_repr()['h'],
            th.tensor([10., 1., 1., 1., 1., 1., 1., 1., 1., 44.]))

    # copy_src with no src field; should use anonymous repr
    g = generate_graph1()
Minjie Wang's avatar
Minjie Wang committed
70
71
    g.register_message_func(fn.copy_src(out='m'))
    g.register_reduce_func(reducer_both)
72
73
74
75
76
77
    g.update_all()
    assert th.allclose(g.get_n_repr()['h'],
            th.tensor([10., 1., 1., 1., 1., 1., 1., 1., 1., 44.]))

    # copy src with no fields;
    g = generate_graph1()
Minjie Wang's avatar
Minjie Wang committed
78
79
    g.register_message_func(fn.copy_src())
    g.register_reduce_func(reducer_out)
80
81
82
83
84
85
86
    g.update_all()
    assert th.allclose(g.get_n_repr()['h'],
            th.tensor([10., 1., 1., 1., 1., 1., 1., 1., 1., 44.]))

def test_copy_edge():
    # copy_edge with both fields
    g = generate_graph()
Minjie Wang's avatar
Minjie Wang committed
87
88
    g.register_message_func(fn.copy_edge(edge='h', out='m'))
    g.register_reduce_func(reducer_both)
89
90
91
92
93
94
    g.update_all()
    assert th.allclose(g.get_n_repr()['h'],
            th.tensor([10., 1., 1., 1., 1., 1., 1., 1., 1., 44.]))

    # copy_edge with only edge field; the out field should use anonymous repr
    g = generate_graph()
Minjie Wang's avatar
Minjie Wang committed
95
96
    g.register_message_func(fn.copy_edge(edge='h'))
    g.register_reduce_func(reducer_out)
97
98
99
100
101
102
    g.update_all()
    assert th.allclose(g.get_n_repr()['h'],
            th.tensor([10., 1., 1., 1., 1., 1., 1., 1., 1., 44.]))

    # copy_edge with no edge field; should use anonymous repr
    g = generate_graph1()
Minjie Wang's avatar
Minjie Wang committed
103
104
    g.register_message_func(fn.copy_edge(out='m'))
    g.register_reduce_func(reducer_both)
105
106
107
108
109
110
    g.update_all()
    assert th.allclose(g.get_n_repr()['h'],
            th.tensor([10., 1., 1., 1., 1., 1., 1., 1., 1., 44.]))

    # copy edge with no fields;
    g = generate_graph1()
Minjie Wang's avatar
Minjie Wang committed
111
112
    g.register_message_func(fn.copy_edge())
    g.register_reduce_func(reducer_out)
113
114
115
116
117
118
119
    g.update_all()
    assert th.allclose(g.get_n_repr()['h'],
            th.tensor([10., 1., 1., 1., 1., 1., 1., 1., 1., 44.]))

def test_src_mul_edge():
    # src_mul_edge with all fields
    g = generate_graph()
Minjie Wang's avatar
Minjie Wang committed
120
121
    g.register_message_func(fn.src_mul_edge(src='h', edge='h', out='m'))
    g.register_reduce_func(reducer_both)
122
123
124
125
126
    g.update_all()
    assert th.allclose(g.get_n_repr()['h'],
            th.tensor([100., 1., 1., 1., 1., 1., 1., 1., 1., 284.]))

    g = generate_graph()
Minjie Wang's avatar
Minjie Wang committed
127
128
    g.register_message_func(fn.src_mul_edge(src='h', edge='h'))
    g.register_reduce_func(reducer_out)
129
130
131
132
133
    g.update_all()
    assert th.allclose(g.get_n_repr()['h'],
            th.tensor([100., 1., 1., 1., 1., 1., 1., 1., 1., 284.]))

    g = generate_graph1()
Minjie Wang's avatar
Minjie Wang committed
134
135
    g.register_message_func(fn.src_mul_edge(out='m'))
    g.register_reduce_func(reducer_both)
136
137
138
139
140
    g.update_all()
    assert th.allclose(g.get_n_repr()['h'],
            th.tensor([100., 1., 1., 1., 1., 1., 1., 1., 1., 284.]))

    g = generate_graph1()
Minjie Wang's avatar
Minjie Wang committed
141
142
    g.register_message_func(fn.src_mul_edge())
    g.register_reduce_func(reducer_out)
143
144
145
146
147
    g.update_all()
    assert th.allclose(g.get_n_repr()['h'],
            th.tensor([100., 1., 1., 1., 1., 1., 1., 1., 1., 284.]))

    g = generate_graph1()
Minjie Wang's avatar
Minjie Wang committed
148
149
    g.register_message_func(fn.src_mul_edge())
    g.register_reduce_func(reducer_none)
150
151
152
153
154
155
156
157
    g.update_all()
    assert th.allclose(g.get_n_repr(),
            th.tensor([100., 1., 1., 1., 1., 1., 1., 1., 1., 284.]))

if __name__ == '__main__':
    test_copy_src()
    test_copy_edge()
    test_src_mul_edge()