capsule.py 10.2 KB
Newer Older
Minjie Wang's avatar
Minjie Wang committed
1
2
3
4
5
6
7
8
9
10
11
12
"""
Capsule Network
================

**Author**: `Jinjing Zhou`
 
This tutorial explains how to use DGL library and its language to implement the
`capsule network <http://arxiv.org/abs/1710.09829>`__ proposed by Geoffrey Hinton and his team.
The algorithm aims to provide a better alternative to current neural network structures.
By using DGL library, users can implement the algorithm in a more intuitive way.
"""

13

Minjie Wang's avatar
Minjie Wang committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
##############################################################################
# Model Overview
# ---------------
# Introduction
# ```````````````````
# Capsule Network were first introduced in 2011 by Geoffrey Hinton, et al.,
# in paper `Transforming Autoencoders <https://www.cs.toronto.edu/~fritz/absps/transauto6.pdf>`__,
# but it was only a few months ago, in November 2017, that Sara Sabour, Nicholas Frosst,
# and Geoffrey Hinton published a paper called Dynamic Routing between Capsules, where they
# introduced a CapsNet architecture that reached state-of-the-art performance on MNIST.
#  
# What's a capsule?
# ```````````````````
# In papers, author states that "A capsule is a group of neurons whose activity vector
# represents the instantiation parameters of a specific type of entity such as an object
29
30
31
# or an object part."
#
# Generally speaking, the idea of capsule is to encode all the information about the
Minjie Wang's avatar
Minjie Wang committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# features into a vector form, by substituting scalars in traditional neural network with vectors.
# And use the norm of the vector to represents the meaning of original scalars. 
# 
# .. image:: https://raw.githubusercontent.com/dmlc/web-data/master/dgl/tutorials/capsule/capsule_f1.png
# 
# Dynamic Routing Algorithm
# `````````````````````````````
# Due to the different structure of network, capsules network has different operations to
# calculate results. This figure shows the comparison, drawn by
# `Max Pechyonkin <https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-ii-how-capsules-work-153b6ade9f66O>`__
# 
# .. image:: https://raw.githubusercontent.com/dmlc/web-data/master/dgl/tutorials/capsule/capsule_f2.png
#    :height: 250px
# 
# The key idea is that the output of each capsule is the sum of weighted input vectors.
# We will go into details in the later section with code implementations.
# 
# Model Implementations
# -------------------------

52
53
54
55
56
57
58
59
##############################################################################
# Algorithm Overview
# ```````````````````````````
#
# .. image:: https://raw.githubusercontent.com/VoVAllen/DGL_Capsule/master/algorithm.png
#
# The main step of routing algorithm is line 4 - 7. In ``DGLGraph`` structure, we consider these steps as a message passing
# procedure.
Minjie Wang's avatar
Minjie Wang committed
60
61

##############################################################################
62
# Consider capsule routing as a graph structure
Minjie Wang's avatar
Minjie Wang committed
63
# ````````````````````````````````````````````````````````````````````````````
64
65
# We can consider each capsule as a node in a graph, and connect all the nodes between layers.
#
Minjie Wang's avatar
Minjie Wang committed
66
# .. image:: https://raw.githubusercontent.com/dmlc/web-data/master/dgl/tutorials/capsule/capsule_f3.png
67
68
#    :height: 150px
#
Minjie Wang's avatar
Minjie Wang committed
69
70
71
72
73
74
75
76
77
78
79
80
def construct_graph(self):
    g = dgl.DGLGraph()
    g.add_nodes(self.input_capsule_num + self.output_capsule_num)
    input_nodes = list(range(self.input_capsule_num))
    output_nodes = list(range(self.input_capsule_num, self.input_capsule_num + self.output_capsule_num))
    u, v = [], []
    for i in input_nodes:
        for j in output_nodes:
            u.append(i)
            v.append(j)
    g.add_edges(u, v)
    return g, input_nodes, output_nodes
81

Minjie Wang's avatar
Minjie Wang committed
82
83

##############################################################################
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Write Message Passing Functions
# ``````````````````````````````````
# Reduce Functions (line 4 - 5)
# .............................................
#
# .. image:: https://raw.githubusercontent.com/dmlc/web-data/master/dgl/tutorials/capsule/capsule_f5.png
#
# At this stage, we need to define a reduce function to aggregate the node features
# from layer :math:`l` and weighted sum them into layer :math:`(l+1)`'s node features.
#
# .. note::
#    The softmax operation is over dimension :math:`j` instead of :math:`i`.
def capsule_reduce(node, msg):
    b_ij_c, u_hat = msg['b_ij'], msg['u_hat']
    # line 4
    c_i = F.softmax(b_ij_c, dim=0)
    # line 5
    s_j = (c_i.unsqueeze(2).unsqueeze(3) * u_hat).sum(dim=1)
    return {'h': s_j}


##############################################################################
# Node Update Functions (line 6)
# ......................................................
# Squash the intermediate representations into node features :math:`v_j`
#
# .. image:: https://raw.githubusercontent.com/dmlc/web-data/master/dgl/tutorials/capsule/step6.png
#
def capsule_update(msg):
    v_j = squash(msg['h'])
    return {'h': v_j}


##############################################################################
# Edge Update Functions (line 7)
# ...........................................................................
# Update the routing parameters by updating edges in graph
#
# .. image:: https://raw.githubusercontent.com/dmlc/web-data/master/dgl/tutorials/capsule/step7.png
#
def update_edge(u, v, edge):
    return {'b_ij': edge['b_ij'] + (v['h'] * edge['u_hat']).mean(dim=1).sum(dim=1)}


##############################################################################
# Call DGL function to execute algorithm
# ````````````````````````````````````````````````````````````````````````````
# Call ``update_all`` and ``update_edge`` functions to execute the whole algorithms.
# Message function is to define which attributes are needed in further computations
#
def routing(self):
    def capsule_msg(src, edge):
        return {'b_ij': edge['b_ij'], 'h': src['h'], 'u_hat': edge['u_hat']}

    self.g.update_all(capsule_msg, capsule_reduce, capsule_update)
    self.g.update_edge(edge_func=update_edge)


##############################################################################
# Forward Function
Minjie Wang's avatar
Minjie Wang committed
144
# ````````````````````````````````````````````````````````````````````````````
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# This section shows the whole process of forward process of capsule routing algorithm.
def forward(self, x):
    self.batch_size = x.size(0)
    u_hat = self.compute_uhat(x)
    self.initialize_nodes_and_edges_features(u_hat)
    for i in range(self.num_routing):
        self.routing()
    this_layer_nodes_feature = self.g.get_n_repr()['h'][
                               self.input_capsule_num:self.input_capsule_num + self.output_capsule_num]
    return this_layer_nodes_feature.transpose(0, 1).unsqueeze(1).unsqueeze(4).squeeze(1)


##############################################################################
# Other Workaround
# ````````````````````````````````````````````````````````````````
# Initialization & Affine Transformation
# ..................................................
# This section implements the transformation operation in capsule networks,
# which transform capsule into different dimensions.
Minjie Wang's avatar
Minjie Wang committed
164
165
# - Pre-compute :math:`\hat{u}_{j|i}`, initialize :math:`b_{ij}` and store them as edge attribute
# - Initialize node features as zero
166
#
Minjie Wang's avatar
Minjie Wang committed
167
# .. image:: https://raw.githubusercontent.com/dmlc/web-data/master/dgl/tutorials/capsule/capsule_f4.png
168
169
170
#

def compute_uhat(self, x):
Minjie Wang's avatar
Minjie Wang committed
171
    # x is the input vextor with shape [batch_size, input_capsule_dim, input_num]
172
    # Transpose x to [batch_size, input_num, input_capsule_dim]
Minjie Wang's avatar
Minjie Wang committed
173
174
175
    x = x.transpose(1, 2)
    # Expand x to [batch_size, input_num, output_num, input_capsule_dim, 1]
    x = torch.stack([x] * self.output_capsule_num, dim=2).unsqueeze(4)
176
    # Expand W from [input_num, output_num, input_capsule_dim, output_capsule_dim]
Minjie Wang's avatar
Minjie Wang committed
177
178
179
180
    # to [batch_size, input_num, output_num, output_capsule_dim, input_capsule_dim]
    W = self.weight.expand(self.batch_size, *self.weight.size())
    # u_hat's shape is [input_num, output_num, batch_size, output_capsule_dim]
    u_hat = torch.matmul(W, x).permute(1, 2, 0, 3, 4).squeeze().contiguous()
181
    return u_hat
Minjie Wang's avatar
Minjie Wang committed
182
183


184
185
def initialize_nodes_and_edges_features(self, u_hat):
    b_ij = torch.zeros(self.input_capsule_num, self.output_capsule_num).to(self.device)
Minjie Wang's avatar
Minjie Wang committed
186
187
    self.g.set_e_repr({'b_ij': b_ij.view(-1)})
    self.g.set_e_repr({'u_hat': u_hat.view(-1, self.batch_size, self.output_capsule_dim)})
188

Minjie Wang's avatar
Minjie Wang committed
189
190
191
192
    # Initialize all node features as zero
    node_features = torch.zeros(self.input_capsule_num + self.output_capsule_num, self.batch_size,
                                self.output_capsule_dim).to(self.device)
    self.g.set_n_repr({'h': node_features})
193

Minjie Wang's avatar
Minjie Wang committed
194
195
196
197
198

##############################################################################
# Squash function
# ..................
# Squashing function is to ensure that short vectors get shrunk to almost zero length and
199
200
201
# long vectors get shrunk to a length slightly below 1. Its norm is expected to represents probabilities
# at some levels.
#
Minjie Wang's avatar
Minjie Wang committed
202
203
# .. image:: https://raw.githubusercontent.com/dmlc/web-data/master/dgl/tutorials/capsule/squash.png
#    :height: 100px
204
205
206
207
208
#
def squash(s, dim=2):
    sq = torch.sum(s ** 2, dim=dim, keepdim=True)
    s_std = torch.sqrt(sq)
    s = (sq / (1.0 + sq)) * (s / s_std)
Minjie Wang's avatar
Minjie Wang committed
209
210
211
212
    return s


##############################################################################
213
214
# General Setup
# .................
Minjie Wang's avatar
Minjie Wang committed
215

216
217
218
219
import dgl
import torch
import torch.nn.functional as F
from torch import nn
Minjie Wang's avatar
Minjie Wang committed
220
221


222
223
224
225
226
227
228
229
230
231
232
233
234
class DGLDigitCapsuleLayer(nn.Module):
    def __init__(self, input_capsule_dim=8, input_capsule_num=1152, output_capsule_num=10, output_capsule_dim=16,
                 num_routing=3, device='cpu'):
        super(DGLDigitCapsuleLayer, self).__init__()
        self.device = device
        self.input_capsule_dim = input_capsule_dim
        self.input_capsule_num = input_capsule_num
        self.output_capsule_dim = output_capsule_dim
        self.output_capsule_num = output_capsule_num
        self.num_routing = num_routing
        self.weight = nn.Parameter(
            torch.randn(input_capsule_num, output_capsule_num, output_capsule_dim, input_capsule_dim))
        self.g, self.input_nodes, self.output_nodes = self.construct_graph()
Minjie Wang's avatar
Minjie Wang committed
235

236
237
238
239
240
241
242

# This section is for defining class in multiple cells.
DGLDigitCapsuleLayer.construct_graph = construct_graph
DGLDigitCapsuleLayer.forward = forward
DGLDigitCapsuleLayer.routing = routing
DGLDigitCapsuleLayer.compute_uhat = compute_uhat
DGLDigitCapsuleLayer.initialize_nodes_and_edges_features = initialize_nodes_and_edges_features