chunk_graph.py 7.19 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# See the __main__ block for usage of chunk_graph().
import pathlib
import json
from contextlib import contextmanager
import logging
import os

import torch
import dgl

from utils import setdir
from utils import array_readwriter

def chunk_numpy_array(arr, fmt_meta, chunk_sizes, path_fmt):
    paths = []
    offset = 0

    for j, n in enumerate(chunk_sizes):
        path = os.path.abspath(path_fmt % j)
        arr_chunk = arr[offset:offset + n]
        logging.info('Chunking %d-%d' % (offset, offset + n))
        array_readwriter.get_array_parser(**fmt_meta).write(path, arr_chunk)
        offset += n
        paths.append(path)

    return paths

def _chunk_graph(g, name, ndata_paths, edata_paths, num_chunks, output_path):
    # First deal with ndata and edata that are homogeneous (i.e. not a dict-of-dict)
    if len(g.ntypes) == 1 and not isinstance(next(iter(ndata_paths.values())), dict):
        ndata_paths = {g.ntypes[0]: ndata_paths}
    if len(g.etypes) == 1 and not isinstance(next(iter(edata_paths.values())), dict):
        edata_paths = {g.etypes[0]: ndata_paths}
    # Then convert all edge types to canonical edge types
    etypestrs = {etype: ':'.join(etype) for etype in g.canonical_etypes}
    edata_paths = {':'.join(g.to_canonical_etype(k)): v for k, v in edata_paths.items()}

    metadata = {}

    metadata['graph_name'] = name
    metadata['node_type'] = g.ntypes

    # Compute the number of nodes per chunk per node type
    metadata['num_nodes_per_chunk'] = num_nodes_per_chunk = []
    for ntype in g.ntypes:
        num_nodes = g.num_nodes(ntype)
        num_nodes_list = []
        for i in range(num_chunks):
            n = num_nodes // num_chunks + (i < num_nodes % num_chunks)
            num_nodes_list.append(n)
        num_nodes_per_chunk.append(num_nodes_list)
    num_nodes_per_chunk_dict = {k: v for k, v in zip(g.ntypes, num_nodes_per_chunk)}

    metadata['edge_type'] = [etypestrs[etype] for etype in g.canonical_etypes]

    # Compute the number of edges per chunk per edge type
    metadata['num_edges_per_chunk'] = num_edges_per_chunk = []
    for etype in g.canonical_etypes:
        num_edges = g.num_edges(etype)
        num_edges_list = []
        for i in range(num_chunks):
            n = num_edges // num_chunks + (i < num_edges % num_chunks)
            num_edges_list.append(n)
        num_edges_per_chunk.append(num_edges_list)
    num_edges_per_chunk_dict = {k: v for k, v in zip(g.canonical_etypes, num_edges_per_chunk)}

    # Split edge index
    metadata['edges'] = {}
    with setdir('edge_index'):
        for etype in g.canonical_etypes:
            etypestr = etypestrs[etype]
            logging.info('Chunking edge index for %s' % etypestr)
            edges_meta = {}
            fmt_meta = {"name": "csv", "delimiter": " "}
            edges_meta['format'] = fmt_meta

            srcdst = torch.stack(g.edges(etype=etype), 1)
            edges_meta['data'] = chunk_numpy_array(
                    srcdst.numpy(), fmt_meta, num_edges_per_chunk_dict[etype],
                    etypestr + '%d.txt')
            metadata['edges'][etypestr] = edges_meta

    # Chunk node data
    metadata['node_data'] = {}
    with setdir('node_data'):
        for ntype, ndata_per_type in ndata_paths.items():
            ndata_meta = {}
            with setdir(ntype):
                for key, path in ndata_per_type.items():
                    logging.info('Chunking node data for type %s key %s' % (ntype, key))
                    ndata_key_meta = {}
                    reader_fmt_meta = writer_fmt_meta = {"name": "numpy"}
                    arr = array_readwriter.get_array_parser(**reader_fmt_meta).read(path)
                    ndata_key_meta['format'] = writer_fmt_meta
                    ndata_key_meta['data'] = chunk_numpy_array(
                            arr, writer_fmt_meta, num_nodes_per_chunk_dict[ntype],
                            key + '-%d.npy')
                    ndata_meta[key] = ndata_key_meta

            metadata['node_data'][ntype] = ndata_meta

    # Chunk edge data
    metadata['edge_data'] = {}
    with setdir('edge_data'):
        for etypestr, edata_per_type in edata_paths.items():
            edata_meta = {}
            with setdir(etypestr):
                for key, path in edata_per_type.items():
                    logging.info('Chunking edge data for type %s key %s' % (etypestr, key))
                    edata_key_meta = {}
                    reader_fmt_meta = writer_fmt_meta = {"name": "numpy"}
                    arr = array_readwriter.get_array_parser(**reader_fmt_meta).read(path)
                    edata_key_meta['format'] = writer_fmt_meta
                    edata_key_meta['data'] = chunk_numpy_array(
                            arr, writer_fmt_meta, num_edges_per_chunk_dict[etype],
                            key + '-%d.npy')
                    edata_meta[key] = edata_key_meta

            metadata['edge_data'][etypestr] = edata_meta

    metadata_path = 'metadata.json'
    with open(metadata_path, 'w') as f:
        json.dump(metadata, f)
    logging.info('Saved metadata in %s' % os.path.abspath(metadata_path))

def chunk_graph(g, name, ndata_paths, edata_paths, num_chunks, output_path):
    """
    Split the graph into multiple chunks.

    A directory will be created at :attr:`output_path` with the metadata and chunked
    edge list as well as the node/edge data.

    Parameters
    ----------
    g : DGLGraph
        The graph.
    name : str
        The name of the graph, to be used later in DistDGL training.
    ndata_paths : dict[str, pathlike] or dict[ntype, dict[str, pathlike]]
        The dictionary of paths pointing to the corresponding numpy array file for each
        node data key.
    edata_paths : dict[str, pathlike] or dict[etype, dict[str, pathlike]]
        The dictionary of paths pointing to the corresponding numpy array file for each
        edge data key.
    num_chunks : int
        The number of chunks
    output_path : pathlike
        The output directory saving the chunked graph.
    """
    for ntype, ndata in ndata_paths.items():
        for key in ndata.keys():
            ndata[key] = os.path.abspath(ndata[key])
    for etype, edata in edata_paths.items():
        for key in edata.keys():
            edata[key] = os.path.abspath(edata[key])
    with setdir(output_path):
        _chunk_graph(g, name, ndata_paths, edata_paths, num_chunks, output_path)

if __name__ == '__main__':
    logging.basicConfig(level='INFO')
    input_dir = '/data'
    output_dir = '/chunked-data'
    (g,), _ = dgl.load_graphs(os.path.join(input_dir, 'graph.dgl'))
    chunk_graph(
            g,
            'mag240m',
            {'paper': {
                'feat': os.path.join(input_dir, 'paper/feat.npy'),
                'label': os.path.join(input_dir, 'paper/label.npy'),
                'year': os.path.join(input_dir, 'paper/year.npy')}},
            {'cites': {'count': os.path.join(input_dir, 'cites/count.npy')},
             'writes': {'year': os.path.join(input_dir, 'writes/year.npy')},
             # you can put the same data file if they indeed share the features.
             'rev_writes': {'year': os.path.join(input_dir, 'writes/year.npy')}},
            4,
            output_dir)
# The generated metadata goes as in tools/sample-config/mag240m-metadata.json.