bipointnet_cls.py 5.84 KB
Newer Older
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
1
import numpy as np
彭卓清's avatar
彭卓清 committed
2
3
4
5
import torch
import torch.nn as nn
import torch.nn.functional as F
from basic import BiLinear
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
6
7
8
from torch.autograd import Variable

offset_map = {1024: -3.2041, 2048: -3.4025, 4096: -3.5836}
彭卓清's avatar
彭卓清 committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37


class Conv1d(nn.Module):
    def __init__(self, inplane, outplane, Linear):
        super().__init__()
        self.lin = Linear(inplane, outplane)

    def forward(self, x):
        B, C, N = x.shape
        x = x.permute(0, 2, 1).contiguous().view(-1, C)
        x = self.lin(x).view(B, N, -1).permute(0, 2, 1).contiguous()
        return x


class EmaMaxPool(nn.Module):
    def __init__(self, kernel_size, affine=True, Linear=BiLinear, use_bn=True):
        super(EmaMaxPool, self).__init__()
        self.kernel_size = kernel_size
        self.bn3 = nn.BatchNorm1d(1024, affine=affine)
        self.use_bn = use_bn

    def forward(self, x):
        batchsize, D, N = x.size()
        if self.use_bn:
            x = torch.max(x, 2, keepdim=True)[0] + offset_map[N]
        else:
            x = torch.max(x, 2, keepdim=True)[0] - 0.3
        return x

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
38

彭卓清's avatar
彭卓清 committed
39
class BiPointNetCls(nn.Module):
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
40
41
42
43
44
45
46
47
    def __init__(
        self,
        output_classes,
        input_dims=3,
        conv1_dim=64,
        use_transform=True,
        Linear=BiLinear,
    ):
彭卓清's avatar
彭卓清 committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        super(BiPointNetCls, self).__init__()
        self.input_dims = input_dims
        self.conv1 = nn.ModuleList()
        self.conv1.append(Conv1d(input_dims, conv1_dim, Linear=Linear))
        self.conv1.append(Conv1d(conv1_dim, conv1_dim, Linear=Linear))
        self.conv1.append(Conv1d(conv1_dim, conv1_dim, Linear=Linear))

        self.bn1 = nn.ModuleList()
        self.bn1.append(nn.BatchNorm1d(conv1_dim))
        self.bn1.append(nn.BatchNorm1d(conv1_dim))
        self.bn1.append(nn.BatchNorm1d(conv1_dim))

        self.conv2 = nn.ModuleList()
        self.conv2.append(Conv1d(conv1_dim, conv1_dim * 2, Linear=Linear))
        self.conv2.append(Conv1d(conv1_dim * 2, conv1_dim * 16, Linear=Linear))

        self.bn2 = nn.ModuleList()
        self.bn2.append(nn.BatchNorm1d(conv1_dim * 2))
        self.bn2.append(nn.BatchNorm1d(conv1_dim * 16))

        self.maxpool = EmaMaxPool(conv1_dim * 16, Linear=Linear, use_bn=True)
        self.pool_feat_len = conv1_dim * 16

        self.mlp3 = nn.ModuleList()
        self.mlp3.append(Linear(conv1_dim * 16, conv1_dim * 8))
        self.mlp3.append(Linear(conv1_dim * 8, conv1_dim * 4))

        self.bn3 = nn.ModuleList()
        self.bn3.append(nn.BatchNorm1d(conv1_dim * 8))
        self.bn3.append(nn.BatchNorm1d(conv1_dim * 4))

        self.dropout = nn.Dropout(0.3)
        self.mlp_out = Linear(conv1_dim * 4, output_classes)

        self.use_transform = use_transform
        if use_transform:
            self.transform1 = TransformNet(input_dims)
            self.trans_bn1 = nn.BatchNorm1d(input_dims)
            self.transform2 = TransformNet(conv1_dim)
            self.trans_bn2 = nn.BatchNorm1d(conv1_dim)

    def forward(self, x):
        batch_size = x.shape[0]
        h = x.permute(0, 2, 1)
        if self.use_transform:
            trans = self.transform1(h)
            h = h.transpose(2, 1)
            h = torch.bmm(h, trans)
            h = h.transpose(2, 1)
            h = F.relu(self.trans_bn1(h))

        for conv, bn in zip(self.conv1, self.bn1):
            h = conv(h)
            h = bn(h)
            h = F.relu(h)

        if self.use_transform:
            trans = self.transform2(h)
            h = h.transpose(2, 1)
            h = torch.bmm(h, trans)
            h = h.transpose(2, 1)
            h = F.relu(self.trans_bn2(h))

        for conv, bn in zip(self.conv2, self.bn2):
            h = conv(h)
            h = bn(h)
            h = F.relu(h)

        h = self.maxpool(h).view(-1, self.pool_feat_len)
        for mlp, bn in zip(self.mlp3, self.bn3):
            h = mlp(h)
            h = bn(h)
            h = F.relu(h)

        h = self.dropout(h)
        out = self.mlp_out(h)
        return out

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
126

彭卓清's avatar
彭卓清 committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
class TransformNet(nn.Module):
    def __init__(self, input_dims=3, conv1_dim=64, Linear=BiLinear):
        super(TransformNet, self).__init__()
        self.conv = nn.ModuleList()
        self.conv.append(Conv1d(input_dims, conv1_dim, Linear=Linear))
        self.conv.append(Conv1d(conv1_dim, conv1_dim * 2, Linear=Linear))
        self.conv.append(Conv1d(conv1_dim * 2, conv1_dim * 16, Linear=Linear))

        self.bn = nn.ModuleList()
        self.bn.append(nn.BatchNorm1d(conv1_dim))
        self.bn.append(nn.BatchNorm1d(conv1_dim * 2))
        self.bn.append(nn.BatchNorm1d(conv1_dim * 16))

        # self.maxpool = nn.MaxPool1d(conv1_dim * 16)
        self.maxpool = EmaMaxPool(conv1_dim * 16, Linear=Linear, use_bn=True)
        self.pool_feat_len = conv1_dim * 16

        self.mlp2 = nn.ModuleList()
        self.mlp2.append(Linear(conv1_dim * 16, conv1_dim * 8))
        self.mlp2.append(Linear(conv1_dim * 8, conv1_dim * 4))

        self.bn2 = nn.ModuleList()
        self.bn2.append(nn.BatchNorm1d(conv1_dim * 8))
        self.bn2.append(nn.BatchNorm1d(conv1_dim * 4))

        self.input_dims = input_dims
        self.mlp_out = Linear(conv1_dim * 4, input_dims * input_dims)

    def forward(self, h):
        batch_size = h.shape[0]
        for conv, bn in zip(self.conv, self.bn):
            h = conv(h)
            h = bn(h)
            h = F.relu(h)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
161

彭卓清's avatar
彭卓清 committed
162
163
164
165
166
167
168
169
        h = self.maxpool(h).view(-1, self.pool_feat_len)
        for mlp, bn in zip(self.mlp2, self.bn2):
            h = mlp(h)
            h = bn(h)
            h = F.relu(h)

        out = self.mlp_out(h)

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
170
171
172
173
174
175
176
177
        iden = Variable(
            torch.from_numpy(
                np.eye(self.input_dims).flatten().astype(np.float32)
            )
        )
        iden = iden.view(1, self.input_dims * self.input_dims).repeat(
            batch_size, 1
        )
彭卓清's avatar
彭卓清 committed
178
179
180
181
182
        if out.is_cuda:
            iden = iden.cuda()
        out = out + iden
        out = out.view(-1, self.input_dims, self.input_dims)
        return out