ModelNetDataLoader.py 3.78 KB
Newer Older
彭卓清's avatar
彭卓清 committed
1
import os
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
2
3
4
import warnings

import numpy as np
彭卓清's avatar
彭卓清 committed
5
from torch.utils.data import Dataset
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
6
7
8

warnings.filterwarnings("ignore")

彭卓清's avatar
彭卓清 committed
9
10
11
12
13
14
15
16

def pc_normalize(pc):
    centroid = np.mean(pc, axis=0)
    pc = pc - centroid
    m = np.max(np.sqrt(np.sum(pc**2, axis=1)))
    pc = pc / m
    return pc

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
17

彭卓清's avatar
彭卓清 committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
def farthest_point_sample(point, npoint):
    """
    Farthest point sampler works as follows:
    1. Initialize the sample set S with a random point
    2. Pick point P not in S, which maximizes the distance d(P, S)
    3. Repeat step 2 until |S| = npoint

    Input:
        xyz: pointcloud data, [N, D]
        npoint: number of samples
    Return:
        centroids: sampled pointcloud index, [npoint, D]
    """
    N, D = point.shape
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
32
    xyz = point[:, :3]
彭卓清's avatar
彭卓清 committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
    centroids = np.zeros((npoint,))
    distance = np.ones((N,)) * 1e10
    farthest = np.random.randint(0, N)
    for i in range(npoint):
        centroids[i] = farthest
        centroid = xyz[farthest, :]
        dist = np.sum((xyz - centroid) ** 2, -1)
        mask = dist < distance
        distance[mask] = dist[mask]
        farthest = np.argmax(distance, -1)
    point = point[centroids.astype(np.int32)]
    return point


class ModelNetDataLoader(Dataset):
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
48
49
50
51
52
53
54
55
56
    def __init__(
        self,
        root,
        npoint=1024,
        split="train",
        fps=False,
        normal_channel=True,
        cache_size=15000,
    ):
彭卓清's avatar
彭卓清 committed
57
58
        """
        Input:
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
59
            root: the root path to the local data files
彭卓清's avatar
彭卓清 committed
60
61
62
63
64
65
66
67
68
            npoint: number of points from each cloud
            split: which split of the data, 'train' or 'test'
            fps: whether to sample points with farthest point sampler
            normal_channel: whether to use additional channel
            cache_size: the cache size of in-memory point clouds
        """
        self.root = root
        self.npoints = npoint
        self.fps = fps
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
69
        self.catfile = os.path.join(self.root, "modelnet40_shape_names.txt")
彭卓清's avatar
彭卓清 committed
70
71
72
73
74
75

        self.cat = [line.rstrip() for line in open(self.catfile)]
        self.classes = dict(zip(self.cat, range(len(self.cat))))
        self.normal_channel = normal_channel

        shape_ids = {}
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
76
77
78
79
80
81
82
83
        shape_ids["train"] = [
            line.rstrip()
            for line in open(os.path.join(self.root, "modelnet40_train.txt"))
        ]
        shape_ids["test"] = [
            line.rstrip()
            for line in open(os.path.join(self.root, "modelnet40_test.txt"))
        ]
彭卓清's avatar
彭卓清 committed
84

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
85
86
        assert split == "train" or split == "test"
        shape_names = ["_".join(x.split("_")[0:-1]) for x in shape_ids[split]]
彭卓清's avatar
彭卓清 committed
87
        # list of (shape_name, shape_txt_file_path) tuple
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
88
89
90
91
92
93
94
95
96
        self.datapath = [
            (
                shape_names[i],
                os.path.join(self.root, shape_names[i], shape_ids[split][i])
                + ".txt",
            )
            for i in range(len(shape_ids[split]))
        ]
        print("The size of %s data is %d" % (split, len(self.datapath)))
彭卓清's avatar
彭卓清 committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110

        self.cache_size = cache_size
        self.cache = {}

    def __len__(self):
        return len(self.datapath)

    def _get_item(self, index):
        if index in self.cache:
            point_set, cls = self.cache[index]
        else:
            fn = self.datapath[index]
            cls = self.classes[self.datapath[index][0]]
            cls = np.array([cls]).astype(np.int32)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
111
            point_set = np.loadtxt(fn[1], delimiter=",").astype(np.float32)
彭卓清's avatar
彭卓清 committed
112
113
114
            if self.fps:
                point_set = farthest_point_sample(point_set, self.npoints)
            else:
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
115
                point_set = point_set[0 : self.npoints, :]
彭卓清's avatar
彭卓清 committed
116
117
118
119
120
121
122
123
124
125

            point_set[:, 0:3] = pc_normalize(point_set[:, 0:3])

            if not self.normal_channel:
                point_set = point_set[:, 0:3]

            if len(self.cache) < self.cache_size:
                self.cache[index] = (point_set, cls)

        return point_set, cls