sign.py 9.08 KB
Newer Older
1
2
import argparse
import time
3

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
4
5
6
import dgl
import dgl.function as fn

7
8
9
import numpy as np
import torch
import torch.nn as nn
10
11
from dataset import load_dataset

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

class FeedForwardNet(nn.Module):
    def __init__(self, in_feats, hidden, out_feats, n_layers, dropout):
        super(FeedForwardNet, self).__init__()
        self.layers = nn.ModuleList()
        self.n_layers = n_layers
        if n_layers == 1:
            self.layers.append(nn.Linear(in_feats, out_feats))
        else:
            self.layers.append(nn.Linear(in_feats, hidden))
            for i in range(n_layers - 2):
                self.layers.append(nn.Linear(hidden, hidden))
            self.layers.append(nn.Linear(hidden, out_feats))
        if self.n_layers > 1:
            self.prelu = nn.PReLU()
            self.dropout = nn.Dropout(dropout)
        self.reset_parameters()

    def reset_parameters(self):
        gain = nn.init.calculate_gain("relu")
        for layer in self.layers:
            nn.init.xavier_uniform_(layer.weight, gain=gain)
            nn.init.zeros_(layer.bias)

    def forward(self, x):
        for layer_id, layer in enumerate(self.layers):
            x = layer(x)
            if layer_id < self.n_layers - 1:
                x = self.dropout(self.prelu(x))
        return x


class SIGN(nn.Module):
45
46
47
48
49
50
51
52
53
54
    def __init__(
        self,
        in_feats,
        hidden,
        out_feats,
        num_hops,
        n_layers,
        dropout,
        input_drop,
    ):
55
56
57
58
59
60
61
        super(SIGN, self).__init__()
        self.dropout = nn.Dropout(dropout)
        self.prelu = nn.PReLU()
        self.inception_ffs = nn.ModuleList()
        self.input_drop = nn.Dropout(input_drop)
        for hop in range(num_hops):
            self.inception_ffs.append(
62
63
64
65
66
                FeedForwardNet(in_feats, hidden, hidden, n_layers, dropout)
            )
        self.project = FeedForwardNet(
            num_hops * hidden, hidden, out_feats, n_layers, dropout
        )
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

    def forward(self, feats):
        feats = [self.input_drop(feat) for feat in feats]
        hidden = []
        for feat, ff in zip(feats, self.inception_ffs):
            hidden.append(ff(feat))
        out = self.project(self.dropout(self.prelu(torch.cat(hidden, dim=-1))))
        return out

    def reset_parameters(self):
        for ff in self.inception_ffs:
            ff.reset_parameters()
        self.project.reset_parameters()


def get_n_params(model):
    pp = 0
    for p in list(model.parameters()):
        nn = 1
        for s in list(p.size()):
87
            nn = nn * s
88
89
90
91
92
93
94
95
96
97
98
        pp += nn
    return pp


def neighbor_average_features(g, args):
    """
    Compute multi-hop neighbor-averaged node features
    """
    print("Compute neighbor-averaged feats")
    g.ndata["feat_0"] = g.ndata["feat"]
    for hop in range(1, args.R + 1):
99
100
101
        g.update_all(
            fn.copy_u(f"feat_{hop-1}", "msg"), fn.mean("msg", f"feat_{hop}")
        )
102
103
104
105
106
107
108
109
110
111
112
113
    res = []
    for hop in range(args.R + 1):
        res.append(g.ndata.pop(f"feat_{hop}"))

    if args.dataset == "ogbn-mag":
        # For MAG dataset, only return features for target node types (i.e.
        # paper nodes)
        target_mask = g.ndata["target_mask"]
        target_ids = g.ndata[dgl.NID][target_mask]
        num_target = target_mask.sum().item()
        new_res = []
        for x in res:
114
115
116
            feat = torch.zeros(
                (num_target,) + x.shape[1:], dtype=x.dtype, device=x.device
            )
117
118
119
120
121
122
123
124
125
126
127
128
            feat[target_ids] = x[target_mask]
            new_res.append(feat)
        res = new_res
    return res


def prepare_data(device, args):
    """
    Load dataset and compute neighbor-averaged node features used by SIGN model
    """
    data = load_dataset(args.dataset, device)
    g, labels, n_classes, train_nid, val_nid, test_nid, evaluator = data
129
    in_feats = g.ndata["feat"].shape[1]
130
131
132
133
134
135
    feats = neighbor_average_features(g, args)
    labels = labels.to(device)
    # move to device
    train_nid = train_nid.to(device)
    val_nid = val_nid.to(device)
    test_nid = test_nid.to(device)
136
137
138
139
140
141
142
143
144
145
    return (
        feats,
        labels,
        in_feats,
        n_classes,
        train_nid,
        val_nid,
        test_nid,
        evaluator,
    )
146
147
148
149
150
151
152
153
154
155
156
157
158


def train(model, feats, labels, loss_fcn, optimizer, train_loader):
    model.train()
    device = labels.device
    for batch in train_loader:
        batch_feats = [x[batch].to(device) for x in feats]
        loss = loss_fcn(model(batch_feats), labels[batch])
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()


159
160
161
def test(
    model, feats, labels, test_loader, evaluator, train_nid, val_nid, test_nid
):
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    model.eval()
    device = labels.device
    preds = []
    for batch in test_loader:
        batch_feats = [feat[batch].to(device) for feat in feats]
        preds.append(torch.argmax(model(batch_feats), dim=-1))
    # Concat mini-batch prediction results along node dimension
    preds = torch.cat(preds, dim=0)
    train_res = evaluator(preds[train_nid], labels[train_nid])
    val_res = evaluator(preds[val_nid], labels[val_nid])
    test_res = evaluator(preds[test_nid], labels[test_nid])
    return train_res, val_res, test_res


def run(args, data, device):
177
178
179
180
181
182
183
184
185
186
    (
        feats,
        labels,
        in_size,
        num_classes,
        train_nid,
        val_nid,
        test_nid,
        evaluator,
    ) = data
187
    train_loader = torch.utils.data.DataLoader(
188
189
        train_nid, batch_size=args.batch_size, shuffle=True, drop_last=False
    )
190
    test_loader = torch.utils.data.DataLoader(
191
192
193
194
195
        torch.arange(labels.shape[0]),
        batch_size=args.eval_batch_size,
        shuffle=False,
        drop_last=False,
    )
196
197
198

    # Initialize model and optimizer for each run
    num_hops = args.R + 1
199
200
201
202
203
204
205
206
207
    model = SIGN(
        in_size,
        args.num_hidden,
        num_classes,
        num_hops,
        args.ff_layer,
        args.dropout,
        args.input_dropout,
    )
208
209
210
211
    model = model.to(device)
    print("# Params:", get_n_params(model))

    loss_fcn = nn.CrossEntropyLoss()
212
213
214
    optimizer = torch.optim.Adam(
        model.parameters(), lr=args.lr, weight_decay=args.weight_decay
    )
215
216
217
218
219
220
221
222
223
224
225

    # Start training
    best_epoch = 0
    best_val = 0
    best_test = 0
    for epoch in range(1, args.num_epochs + 1):
        start = time.time()
        train(model, feats, labels, loss_fcn, optimizer, train_loader)

        if epoch % args.eval_every == 0:
            with torch.no_grad():
226
227
228
229
230
231
232
233
234
235
                acc = test(
                    model,
                    feats,
                    labels,
                    test_loader,
                    evaluator,
                    train_nid,
                    val_nid,
                    test_nid,
                )
236
237
238
239
240
241
242
243
244
            end = time.time()
            log = "Epoch {}, Time(s): {:.4f}, ".format(epoch, end - start)
            log += "Acc: Train {:.4f}, Val {:.4f}, Test {:.4f}".format(*acc)
            print(log)
            if acc[1] > best_val:
                best_epoch = epoch
                best_val = acc[1]
                best_test = acc[2]

245
246
247
248
249
    print(
        "Best Epoch {}, Val {:.4f}, Test {:.4f}".format(
            best_epoch, best_val, best_test
        )
    )
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    return best_val, best_test


def main(args):
    if args.gpu < 0:
        device = "cpu"
    else:
        device = "cuda:{}".format(args.gpu)

    with torch.no_grad():
        data = prepare_data(device, args)
    val_accs = []
    test_accs = []
    for i in range(args.num_runs):
        print(f"Run {i} start training")
        best_val, best_test = run(args, data, device)
        val_accs.append(best_val)
        test_accs.append(best_test)

269
270
271
272
273
274
275
276
    print(
        f"Average val accuracy: {np.mean(val_accs):.4f}, "
        f"std: {np.std(val_accs):.4f}"
    )
    print(
        f"Average test accuracy: {np.mean(test_accs):.4f}, "
        f"std: {np.std(test_accs):.4f}"
    )
277
278
279
280
281
282


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="SIGN")
    parser.add_argument("--num-epochs", type=int, default=1000)
    parser.add_argument("--num-hidden", type=int, default=512)
283
    parser.add_argument("--R", type=int, default=5, help="number of hops")
284
285
    parser.add_argument("--lr", type=float, default=0.001)
    parser.add_argument("--dataset", type=str, default="ogbn-mag")
286
287
288
    parser.add_argument(
        "--dropout", type=float, default=0.5, help="dropout on activation"
    )
289
290
291
292
    parser.add_argument("--gpu", type=int, default=0)
    parser.add_argument("--weight-decay", type=float, default=0)
    parser.add_argument("--eval-every", type=int, default=10)
    parser.add_argument("--batch-size", type=int, default=50000)
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
    parser.add_argument(
        "--eval-batch-size",
        type=int,
        default=100000,
        help="evaluation batch size",
    )
    parser.add_argument(
        "--ff-layer", type=int, default=2, help="number of feed-forward layers"
    )
    parser.add_argument(
        "--input-dropout",
        type=float,
        default=0,
        help="dropout on input features",
    )
    parser.add_argument(
        "--num-runs",
        type=int,
        default=10,
        help="number of times to repeat the experiment",
    )
314
315
316
317
    args = parser.parse_args()

    print(args)
    main(args)