main.py 16.5 KB
Newer Older
Ereboas's avatar
Ereboas committed
1
2
3
import argparse
import math

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
4
5
import dgl

Ereboas's avatar
Ereboas committed
6
7
import torch
import torch.nn.functional as F
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
8
9
from dgl.dataloading.negative_sampler import GlobalUniform
from dgl.nn.pytorch import GraphConv, SAGEConv
10
from ogb.linkproppred import DglLinkPropPredDataset, Evaluator
Ereboas's avatar
Ereboas committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from torch.nn import Linear
from torch.utils.data import DataLoader


class Logger(object):
    def __init__(self, runs, info=None):
        self.info = info
        self.results = [[] for _ in range(runs)]

    def add_result(self, run, result):
        assert len(result) == 3
        assert run >= 0 and run < len(self.results)
        self.results[run].append(result)

    def print_statistics(self, run=None):
        if run is not None:
            result = 100 * torch.tensor(self.results[run])
            argmax = result[:, 1].argmax().item()
            print(f"Run {run + 1:02d}:")
            print(f"Highest Train: {result[:, 0].max():.2f}")
            print(f"Highest Valid: {result[:, 1].max():.2f}")
            print(f"  Final Train: {result[argmax, 0]:.2f}")
            print(f"   Final Test: {result[argmax, 2]:.2f}")
        else:
            result = 100 * torch.tensor(self.results)

            best_results = []
            for r in result:
                train1 = r[:, 0].max().item()
                valid = r[:, 1].max().item()
                train2 = r[r[:, 1].argmax(), 0].item()
                test = r[r[:, 1].argmax(), 2].item()
                best_results.append((train1, valid, train2, test))

            best_result = torch.tensor(best_results)

            print(f"All runs:")
            r = best_result[:, 0]
            print(f"Highest Train: {r.mean():.2f} ± {r.std():.2f}")
            r = best_result[:, 1]
            print(f"Highest Valid: {r.mean():.2f} ± {r.std():.2f}")
            r = best_result[:, 2]
            print(f"  Final Train: {r.mean():.2f} ± {r.std():.2f}")
            r = best_result[:, 3]
            print(f"   Final Test: {r.mean():.2f} ± {r.std():.2f}")


class NGNN_GCNConv(torch.nn.Module):
59
60
61
    def __init__(
        self, in_channels, hidden_channels, out_channels, num_nonl_layers
    ):
Ereboas's avatar
Ereboas committed
62
        super(NGNN_GCNConv, self).__init__()
63
64
65
        self.num_nonl_layers = (
            num_nonl_layers  # number of nonlinear layers in each conv layer
        )
Ereboas's avatar
Ereboas committed
66
67
68
69
70
71
72
        self.conv = GraphConv(in_channels, hidden_channels)
        self.fc = Linear(hidden_channels, hidden_channels)
        self.fc2 = Linear(hidden_channels, out_channels)
        self.reset_parameters()

    def reset_parameters(self):
        self.conv.reset_parameters()
73
        gain = torch.nn.init.calculate_gain("relu")
Ereboas's avatar
Ereboas committed
74
75
76
77
78
79
80
81
82
83
84
85
        torch.nn.init.xavier_uniform_(self.fc.weight, gain=gain)
        torch.nn.init.xavier_uniform_(self.fc2.weight, gain=gain)
        for bias in [self.fc.bias, self.fc2.bias]:
            stdv = 1.0 / math.sqrt(bias.size(0))
            bias.data.uniform_(-stdv, stdv)

    def forward(self, g, x):
        x = self.conv(g, x)

        if self.num_nonl_layers == 2:
            x = F.relu(x)
            x = self.fc(x)
86

Ereboas's avatar
Ereboas committed
87
88
89
90
        x = F.relu(x)
        x = self.fc2(x)
        return x

91

Ereboas's avatar
Ereboas committed
92
class GCN(torch.nn.Module):
93
94
95
96
97
98
99
100
101
102
    def __init__(
        self,
        in_channels,
        hidden_channels,
        out_channels,
        num_layers,
        dropout,
        ngnn_type,
        dataset,
    ):
Ereboas's avatar
Ereboas committed
103
104
105
106
107
        super(GCN, self).__init__()

        self.dataset = dataset
        self.convs = torch.nn.ModuleList()

108
109
110
111
112
113
114
115
116
117
118
119
        num_nonl_layers = (
            1 if num_layers <= 2 else 2
        )  # number of nonlinear layers in each conv layer
        if ngnn_type == "input":
            self.convs.append(
                NGNN_GCNConv(
                    in_channels,
                    hidden_channels,
                    hidden_channels,
                    num_nonl_layers,
                )
            )
Ereboas's avatar
Ereboas committed
120
121
            for _ in range(num_layers - 2):
                self.convs.append(GraphConv(hidden_channels, hidden_channels))
122
        elif ngnn_type == "hidden":
Ereboas's avatar
Ereboas committed
123
124
            self.convs.append(GraphConv(in_channels, hidden_channels))
            for _ in range(num_layers - 2):
125
126
127
128
129
130
131
132
133
                self.convs.append(
                    NGNN_GCNConv(
                        hidden_channels,
                        hidden_channels,
                        hidden_channels,
                        num_nonl_layers,
                    )
                )

Ereboas's avatar
Ereboas committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
        self.convs.append(GraphConv(hidden_channels, out_channels))

        self.dropout = dropout
        self.reset_parameters()

    def reset_parameters(self):
        for conv in self.convs:
            conv.reset_parameters()

    def forward(self, g, x):
        for conv in self.convs[:-1]:
            x = conv(g, x)
            x = F.relu(x)
            x = F.dropout(x, p=self.dropout, training=self.training)
        x = self.convs[-1](g, x)
        return x


class NGNN_SAGEConv(torch.nn.Module):
153
154
155
156
157
158
159
160
161
    def __init__(
        self,
        in_channels,
        hidden_channels,
        out_channels,
        num_nonl_layers,
        *,
        reduce,
    ):
Ereboas's avatar
Ereboas committed
162
        super(NGNN_SAGEConv, self).__init__()
163
164
165
        self.num_nonl_layers = (
            num_nonl_layers  # number of nonlinear layers in each conv layer
        )
Ereboas's avatar
Ereboas committed
166
167
168
169
170
171
172
        self.conv = SAGEConv(in_channels, hidden_channels, reduce)
        self.fc = Linear(hidden_channels, hidden_channels)
        self.fc2 = Linear(hidden_channels, out_channels)
        self.reset_parameters()

    def reset_parameters(self):
        self.conv.reset_parameters()
173
        gain = torch.nn.init.calculate_gain("relu")
Ereboas's avatar
Ereboas committed
174
175
176
177
178
179
180
181
182
183
184
185
        torch.nn.init.xavier_uniform_(self.fc.weight, gain=gain)
        torch.nn.init.xavier_uniform_(self.fc2.weight, gain=gain)
        for bias in [self.fc.bias, self.fc2.bias]:
            stdv = 1.0 / math.sqrt(bias.size(0))
            bias.data.uniform_(-stdv, stdv)

    def forward(self, g, x):
        x = self.conv(g, x)

        if self.num_nonl_layers == 2:
            x = F.relu(x)
            x = self.fc(x)
186

Ereboas's avatar
Ereboas committed
187
188
189
190
        x = F.relu(x)
        x = self.fc2(x)
        return x

191

Ereboas's avatar
Ereboas committed
192
class SAGE(torch.nn.Module):
193
194
195
196
197
198
199
200
201
202
203
    def __init__(
        self,
        in_channels,
        hidden_channels,
        out_channels,
        num_layers,
        dropout,
        ngnn_type,
        dataset,
        reduce="mean",
    ):
Ereboas's avatar
Ereboas committed
204
205
206
207
        super(SAGE, self).__init__()

        self.dataset = dataset
        self.convs = torch.nn.ModuleList()
208
209
210
211
212
213
214
215
216
217
218
219
220
221

        num_nonl_layers = (
            1 if num_layers <= 2 else 2
        )  # number of nonlinear layers in each conv layer
        if ngnn_type == "input":
            self.convs.append(
                NGNN_SAGEConv(
                    in_channels,
                    hidden_channels,
                    hidden_channels,
                    num_nonl_layers,
                    reduce=reduce,
                )
            )
Ereboas's avatar
Ereboas committed
222
            for _ in range(num_layers - 2):
223
224
225
226
                self.convs.append(
                    SAGEConv(hidden_channels, hidden_channels, reduce)
                )
        elif ngnn_type == "hidden":
Ereboas's avatar
Ereboas committed
227
228
            self.convs.append(SAGEConv(in_channels, hidden_channels, reduce))
            for _ in range(num_layers - 2):
229
230
231
232
233
234
235
236
237
238
                self.convs.append(
                    NGNN_SAGEConv(
                        hidden_channels,
                        hidden_channels,
                        hidden_channels,
                        num_nonl_layers,
                        reduce=reduce,
                    )
                )

Ereboas's avatar
Ereboas committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
        self.convs.append(SAGEConv(hidden_channels, out_channels, reduce))

        self.dropout = dropout
        self.reset_parameters()

    def reset_parameters(self):
        for conv in self.convs:
            conv.reset_parameters()

    def forward(self, g, x):
        for conv in self.convs[:-1]:
            x = conv(g, x)
            x = F.relu(x)
            x = F.dropout(x, p=self.dropout, training=self.training)
        x = self.convs[-1](g, x)
        return x


class LinkPredictor(torch.nn.Module):
258
259
260
    def __init__(
        self, in_channels, hidden_channels, out_channels, num_layers, dropout
    ):
Ereboas's avatar
Ereboas committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
        super(LinkPredictor, self).__init__()

        self.lins = torch.nn.ModuleList()
        self.lins.append(Linear(in_channels, hidden_channels))
        for _ in range(num_layers - 2):
            self.lins.append(Linear(hidden_channels, hidden_channels))
        self.lins.append(Linear(hidden_channels, out_channels))

        self.dropout = dropout
        self.reset_parameters()

    def reset_parameters(self):
        for lin in self.lins:
            lin.reset_parameters()

    def forward(self, x_i, x_j):
        x = x_i * x_j
        for lin in self.lins[:-1]:
            x = lin(x)
            x = F.relu(x)
            x = F.dropout(x, p=self.dropout, training=self.training)
        x = self.lins[-1](x)
        return torch.sigmoid(x)


def train(model, predictor, g, x, split_edge, optimizer, batch_size):
    model.train()
    predictor.train()

290
    pos_train_edge = split_edge["train"]["edge"].to(x.device)
Ereboas's avatar
Ereboas committed
291
292
    neg_sampler = GlobalUniform(1)
    total_loss = total_examples = 0
293
294
295
    for perm in DataLoader(
        range(pos_train_edge.size(0)), batch_size, shuffle=True
    ):
Ereboas's avatar
Ereboas committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
        optimizer.zero_grad()

        h = model(g, x)

        edge = pos_train_edge[perm].t()

        pos_out = predictor(h[edge[0]], h[edge[1]])
        pos_loss = -torch.log(pos_out + 1e-15).mean()

        edge = neg_sampler(g, edge[0])

        neg_out = predictor(h[edge[0]], h[edge[1]])
        neg_loss = -torch.log(1 - neg_out + 1e-15).mean()

        loss = pos_loss + neg_loss
        loss.backward()

313
        if model.dataset == "ogbl-ddi":
Ereboas's avatar
Ereboas committed
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
            torch.nn.utils.clip_grad_norm_(x, 1.0)
        torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
        torch.nn.utils.clip_grad_norm_(predictor.parameters(), 1.0)

        optimizer.step()

        num_examples = pos_out.size(0)
        total_loss += loss.item() * num_examples
        total_examples += num_examples

    return total_loss / total_examples


@torch.no_grad()
def test(model, predictor, g, x, split_edge, evaluator, batch_size):
    model.eval()
    predictor.eval()

    h = model(g, x)

334
335
336
337
338
    pos_train_edge = split_edge["eval_train"]["edge"].to(h.device)
    pos_valid_edge = split_edge["valid"]["edge"].to(h.device)
    neg_valid_edge = split_edge["valid"]["edge_neg"].to(h.device)
    pos_test_edge = split_edge["test"]["edge"].to(h.device)
    neg_test_edge = split_edge["test"]["edge_neg"].to(h.device)
Ereboas's avatar
Ereboas committed
339
340
341
342
343
344
345
346

    def get_pred(test_edges, h):
        preds = []
        for perm in DataLoader(range(test_edges.size(0)), batch_size):
            edge = test_edges[perm].t()
            preds += [predictor(h[edge[0]], h[edge[1]]).squeeze().cpu()]
        pred = torch.cat(preds, dim=0)
        return pred
347

Ereboas's avatar
Ereboas committed
348
349
350
351
352
353
354
355
356
    pos_train_pred = get_pred(pos_train_edge, h)
    pos_valid_pred = get_pred(pos_valid_edge, h)
    neg_valid_pred = get_pred(neg_valid_edge, h)
    pos_test_pred = get_pred(pos_test_edge, h)
    neg_test_pred = get_pred(neg_test_edge, h)

    results = {}
    for K in [20, 50, 100]:
        evaluator.K = K
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
        train_hits = evaluator.eval(
            {
                "y_pred_pos": pos_train_pred,
                "y_pred_neg": neg_valid_pred,
            }
        )[f"hits@{K}"]
        valid_hits = evaluator.eval(
            {
                "y_pred_pos": pos_valid_pred,
                "y_pred_neg": neg_valid_pred,
            }
        )[f"hits@{K}"]
        test_hits = evaluator.eval(
            {
                "y_pred_pos": pos_test_pred,
                "y_pred_neg": neg_test_pred,
            }
        )[f"hits@{K}"]

        results[f"Hits@{K}"] = (train_hits, valid_hits, test_hits)
Ereboas's avatar
Ereboas committed
377
378
379
380
381

    return results


def main():
382
383
384
    parser = argparse.ArgumentParser(
        description="OGBL(Full Batch GCN/GraphSage + NGNN)"
    )
Ereboas's avatar
Ereboas committed
385
386

    # dataset setting
387
388
389
390
391
392
    parser.add_argument(
        "--dataset",
        type=str,
        default="ogbl-ddi",
        choices=["ogbl-ddi", "ogbl-collab", "ogbl-ppa"],
    )
Ereboas's avatar
Ereboas committed
393
394

    # device setting
395
396
397
398
399
400
    parser.add_argument(
        "--device",
        type=int,
        default=0,
        help="GPU device ID. Use -1 for CPU training.",
    )
Ereboas's avatar
Ereboas committed
401
402

    # model structure settings
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
    parser.add_argument(
        "--use_sage",
        action="store_true",
        help="If not set, use GCN by default.",
    )
    parser.add_argument(
        "--ngnn_type",
        type=str,
        default="input",
        choices=["input", "hidden"],
        help="You can set this value from 'input' or 'hidden' to apply NGNN to different GNN layers.",
    )
    parser.add_argument(
        "--num_layers", type=int, default=3, help="number of GNN layers"
    )
    parser.add_argument("--hidden_channels", type=int, default=256)
    parser.add_argument("--dropout", type=float, default=0.0)
    parser.add_argument("--batch_size", type=int, default=64 * 1024)
    parser.add_argument("--lr", type=float, default=0.001)
    parser.add_argument("--epochs", type=int, default=400)
Ereboas's avatar
Ereboas committed
423
424

    # training settings
425
426
    parser.add_argument("--eval_steps", type=int, default=1)
    parser.add_argument("--runs", type=int, default=10)
Ereboas's avatar
Ereboas committed
427
428
429
    args = parser.parse_args()
    print(args)

430
431
432
433
434
    device = (
        f"cuda:{args.device}"
        if args.device != -1 and torch.cuda.is_available()
        else "cpu"
    )
Ereboas's avatar
Ereboas committed
435
436
437
438
439
440
441
    device = torch.device(device)

    dataset = DglLinkPropPredDataset(name=args.dataset)
    g = dataset[0]
    split_edge = dataset.get_edge_split()

    # We randomly pick some training samples that we want to evaluate on:
442
443
444
    idx = torch.randperm(split_edge["train"]["edge"].size(0))
    idx = idx[: split_edge["valid"]["edge"].size(0)]
    split_edge["eval_train"] = {"edge": split_edge["train"]["edge"][idx]}
Ereboas's avatar
Ereboas committed
445

446
447
    if dataset.name == "ogbl-ppa":
        g.ndata["feat"] = g.ndata["feat"].to(torch.float)
Ereboas's avatar
Ereboas committed
448

449
    if dataset.name == "ogbl-ddi":
Ereboas's avatar
Ereboas committed
450
451
        emb = torch.nn.Embedding(g.num_nodes(), args.hidden_channels).to(device)
        in_channels = args.hidden_channels
452
453
454
    else:  # ogbl-collab, ogbl-ppa
        in_channels = g.ndata["feat"].size(-1)

Ereboas's avatar
Ereboas committed
455
456
    # select model
    if args.use_sage:
457
458
459
460
461
462
463
464
465
466
        model = SAGE(
            in_channels,
            args.hidden_channels,
            args.hidden_channels,
            args.num_layers,
            args.dropout,
            args.ngnn_type,
            dataset.name,
        )
    else:  # GCN
Ereboas's avatar
Ereboas committed
467
        g = dgl.add_self_loop(g)
468
469
470
471
472
473
474
475
476
477
478
479
480
        model = GCN(
            in_channels,
            args.hidden_channels,
            args.hidden_channels,
            args.num_layers,
            args.dropout,
            args.ngnn_type,
            dataset.name,
        )

    predictor = LinkPredictor(
        args.hidden_channels, args.hidden_channels, 1, 3, args.dropout
    )
Ereboas's avatar
Ereboas committed
481
482
483
484
485

    g, model, predictor = map(lambda x: x.to(device), (g, model, predictor))

    evaluator = Evaluator(name=dataset.name)
    loggers = {
486
487
488
        "Hits@20": Logger(args.runs, args),
        "Hits@50": Logger(args.runs, args),
        "Hits@100": Logger(args.runs, args),
Ereboas's avatar
Ereboas committed
489
490
491
492
493
    }

    for run in range(args.runs):
        model.reset_parameters()
        predictor.reset_parameters()
494
        if dataset.name == "ogbl-ddi":
Ereboas's avatar
Ereboas committed
495
            torch.nn.init.xavier_uniform_(emb.weight)
496
            g.ndata["feat"] = emb.weight
Ereboas's avatar
Ereboas committed
497
        optimizer = torch.optim.Adam(
498
499
500
501
502
            list(model.parameters())
            + list(predictor.parameters())
            + (list(emb.parameters()) if dataset.name == "ogbl-ddi" else []),
            lr=args.lr,
        )
Ereboas's avatar
Ereboas committed
503
        for epoch in range(1, 1 + args.epochs):
504
505
506
507
508
509
510
511
512
            loss = train(
                model,
                predictor,
                g,
                g.ndata["feat"],
                split_edge,
                optimizer,
                args.batch_size,
            )
Ereboas's avatar
Ereboas committed
513
514

            if epoch % args.eval_steps == 0:
515
516
517
518
519
520
521
522
523
                results = test(
                    model,
                    predictor,
                    g,
                    g.ndata["feat"],
                    split_edge,
                    evaluator,
                    args.batch_size,
                )
Ereboas's avatar
Ereboas committed
524
525
526
527
                for key, result in results.items():
                    loggers[key].add_result(run, result)
                    train_hits, valid_hits, test_hits = result
                    print(key)
528
529
530
531
532
533
534
535
536
                    print(
                        f"Run: {run + 1:02d}, "
                        f"Epoch: {epoch:02d}, "
                        f"Loss: {loss:.4f}, "
                        f"Train: {100 * train_hits:.2f}%, "
                        f"Valid: {100 * valid_hits:.2f}%, "
                        f"Test: {100 * test_hits:.2f}%"
                    )
                print("---")
Ereboas's avatar
Ereboas committed
537
538
539
540
541
542
543
544
545
546
547
548

        for key in loggers.keys():
            print(key)
            loggers[key].print_statistics(run)

    for key in loggers.keys():
        print(key)
        loggers[key].print_statistics()


if __name__ == "__main__":
    main()