main_sample.py 5.58 KB
Newer Older
1
import argparse
2
3
4
import random
import warnings

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
5
6
import dgl

7
8
9
import numpy as np
import torch as th
import torch.nn as nn
10
11

warnings.filterwarnings("ignore")
12
13

from dataset import process_dataset, process_dataset_appnp
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
14
from model import LogReg, MVGRL
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
parser = argparse.ArgumentParser(description="mvgrl")

parser.add_argument(
    "--dataname", type=str, default="cora", help="Name of dataset."
)
parser.add_argument(
    "--gpu", type=int, default=-1, help="GPU index. Default: -1, using cpu."
)
parser.add_argument("--epochs", type=int, default=500, help="Training epochs.")
parser.add_argument(
    "--patience",
    type=int,
    default=20,
    help="Patient epochs to wait before early stopping.",
)
parser.add_argument(
    "--lr1", type=float, default=0.001, help="Learning rate of mvgrl."
)
parser.add_argument(
    "--lr2", type=float, default=0.01, help="Learning rate of linear evaluator."
)
parser.add_argument(
    "--wd1", type=float, default=0.0, help="Weight decay of mvgrl."
)
parser.add_argument(
    "--wd2", type=float, default=0.0, help="Weight decay of linear evaluator."
)
parser.add_argument(
    "--epsilon",
    type=float,
    default=0.01,
    help="Edge mask threshold of diffusion graph.",
)
parser.add_argument(
    "--hid_dim", type=int, default=512, help="Hidden layer dim."
)
parser.add_argument(
    "--sample_size", type=int, default=2000, help="Subgraph size."
)
55
56
57
58
59

args = parser.parse_args()

# check cuda
if args.gpu != -1 and th.cuda.is_available():
60
    args.device = "cuda:{}".format(args.gpu)
61
else:
62
    args.device = "cpu"
63

64
if __name__ == "__main__":
65
66
67
    print(args)

    # Step 1: Prepare data =================================================================== #
68
69
70
71
72
73
74
75
76
77
78
    if args.dataname == "pubmed":
        (
            graph,
            diff_graph,
            feat,
            label,
            train_idx,
            val_idx,
            test_idx,
            edge_weight,
        ) = process_dataset_appnp(args.epsilon)
79
    else:
80
81
82
83
84
85
86
87
88
89
        (
            graph,
            diff_graph,
            feat,
            label,
            train_idx,
            val_idx,
            test_idx,
            edge_weight,
        ) = process_dataset(args.dataname, args.epsilon)
90
    edge_weight = th.tensor(edge_weight).float()
91
92
    graph.ndata["feat"] = feat
    diff_graph.edata["edge_weight"] = edge_weight
93
94
95
96
97
98
99
100
101
102
103

    n_feat = feat.shape[1]
    n_classes = np.unique(label).shape[0]
    edge_weight = th.tensor(edge_weight).float()

    train_idx = train_idx.to(args.device)
    val_idx = val_idx.to(args.device)
    test_idx = test_idx.to(args.device)

    n_node = graph.number_of_nodes()

Hengrui Zhang's avatar
Hengrui Zhang committed
104
    sample_size = args.sample_size
105
106
107
108
109
110
111
112
113
114
115

    lbl1 = th.ones(sample_size * 2)
    lbl2 = th.zeros(sample_size * 2)
    lbl = th.cat((lbl1, lbl2))
    lbl = lbl.to(args.device)

    # Step 2: Create model =================================================================== #
    model = MVGRL(n_feat, args.hid_dim)
    model = model.to(args.device)

    # Step 3: Create training components ===================================================== #
116
117
118
    optimizer = th.optim.Adam(
        model.parameters(), lr=args.lr1, weight_decay=args.wd1
    )
119
120
121
122
123
    loss_fn = nn.BCEWithLogitsLoss()

    node_list = list(range(n_node))

    # Step 4: Training epochs ================================================================ #
124
    best = float("inf")
125
126
127
128
129
130
131
132
133
134
    cnt_wait = 0
    for epoch in range(args.epochs):
        model.train()
        optimizer.zero_grad()

        sample_idx = random.sample(node_list, sample_size)

        g = dgl.node_subgraph(graph, sample_idx)
        dg = dgl.node_subgraph(diff_graph, sample_idx)

135
136
        f = g.ndata.pop("feat")
        ew = dg.edata.pop("edge_weight")
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

        shuf_idx = np.random.permutation(sample_size)
        sf = f[shuf_idx, :]

        g = g.to(args.device)
        dg = dg.to(args.device)
        f = f.to(args.device)
        ew = ew.to(args.device)

        sf = sf.to(args.device)

        out = model(g, dg, f, sf, ew)
        loss = loss_fn(out, lbl)

        loss.backward()
        optimizer.step()

154
        print("Epoch: {0}, Loss: {1:0.4f}".format(epoch, loss.item()))
155
156
157
158

        if loss < best:
            best = loss
            cnt_wait = 0
159
            th.save(model.state_dict(), "model.pkl")
160
161
162
163
        else:
            cnt_wait += 1

        if cnt_wait == args.patience:
164
            print("Early stopping")
165
166
            break

167
    model.load_state_dict(th.load("model.pkl"))
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

    graph = graph.to(args.device)
    diff_graph = diff_graph.to(args.device)
    feat = feat.to(args.device)
    edge_weight = edge_weight.to(args.device)
    embeds = model.get_embedding(graph, diff_graph, feat, edge_weight)

    train_embs = embeds[train_idx]
    test_embs = embeds[test_idx]

    label = label.to(args.device)
    train_labels = label[train_idx]
    test_labels = label[test_idx]
    accs = []

    # Step 5:  Linear evaluation ========================================================== #
    for _ in range(5):
        model = LogReg(args.hid_dim, n_classes)
186
187
188
        opt = th.optim.Adam(
            model.parameters(), lr=args.lr2, weight_decay=args.wd2
        )
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

        model = model.to(args.device)
        loss_fn = nn.CrossEntropyLoss()
        for epoch in range(300):
            model.train()
            opt.zero_grad()
            logits = model(train_embs)
            loss = loss_fn(logits, train_labels)
            loss.backward()
            opt.step()

        model.eval()
        logits = model(test_embs)
        preds = th.argmax(logits, dim=1)
        acc = th.sum(preds == test_labels).float() / test_labels.shape[0]
        accs.append(acc * 100)

    accs = th.stack(accs)
Hengrui Zhang's avatar
Hengrui Zhang committed
207
    print(accs.mean().item(), accs.std().item())