main.py 6.02 KB
Newer Older
1
2
3
4
5
import json
import os
from datetime import datetime
from time import time

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
6
7
import dgl

8
9
10
import torch
import torch.nn.functional as F
from data_preprocess import degree_as_feature, node_label_as_feature
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
11
12
from dgl.data import LegacyTUDataset
from dgl.dataloading import GraphDataLoader
13
from networks import GraphClassifier
14
15
from torch import Tensor
from torch.utils.data import random_split
16
17
18
from utils import get_stats, parse_args


19
20
21
22
23
24
25
26
27
def compute_loss(
    cls_logits: Tensor,
    labels: Tensor,
    logits_s1: Tensor,
    logits_s2: Tensor,
    epoch: int,
    total_epochs: int,
    device: torch.device,
):
28
29
30
31
32
33
34
35
36
37
38
39
40
    # classification loss
    classify_loss = F.nll_loss(cls_logits, labels.to(device))

    # loss for vertex infomax pooling
    scale1, scale2 = logits_s1.size(0) // 2, logits_s2.size(0) // 2
    s1_label_t, s1_label_f = torch.ones(scale1), torch.zeros(scale1)
    s2_label_t, s2_label_f = torch.ones(scale2), torch.zeros(scale2)
    s1_label = torch.cat((s1_label_t, s1_label_f), dim=0).to(device)
    s2_label = torch.cat((s2_label_t, s2_label_f), dim=0).to(device)

    pool_loss_s1 = F.binary_cross_entropy_with_logits(logits_s1, s1_label)
    pool_loss_s2 = F.binary_cross_entropy_with_logits(logits_s2, s2_label)
    pool_loss = (pool_loss_s1 + pool_loss_s2) / 2
41

42
43
44
45
46
    loss = classify_loss + (2 - epoch / total_epochs) * pool_loss

    return loss


47
48
49
50
51
52
53
54
def train(
    model: torch.nn.Module,
    optimizer,
    trainloader,
    device,
    curr_epoch,
    total_epochs,
):
55
56
    model.train()

57
    total_loss = 0.0
58
59
60
61
62
63
64
    num_batches = len(trainloader)

    for batch in trainloader:
        optimizer.zero_grad()
        batch_graphs, batch_labels = batch
        batch_graphs = batch_graphs.to(device)
        batch_labels = batch_labels.long().to(device)
65
66
67
68
        out, l1, l2 = model(batch_graphs, batch_graphs.ndata["feat"])
        loss = compute_loss(
            out, batch_labels, l1, l2, curr_epoch, total_epochs, device
        )
69
70
71
72
        loss.backward()
        optimizer.step()

        total_loss += loss.item()
73

74
75
76
77
    return total_loss / num_batches


@torch.no_grad()
78
def test(model: torch.nn.Module, loader, device):
79
80
    model.eval()

81
    correct = 0.0
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    num_graphs = 0

    for batch in loader:
        batch_graphs, batch_labels = batch
        num_graphs += batch_labels.size(0)
        batch_graphs = batch_graphs.to(device)
        batch_labels = batch_labels.long().to(device)
        out, _, _ = model(batch_graphs, batch_graphs.ndata["feat"])
        pred = out.argmax(dim=1)
        correct += pred.eq(batch_labels).sum().item()

    return correct / num_graphs


def main(args):
    # Step 1: Prepare graph data and retrieve train/validation/test index ============================= #
    dataset = LegacyTUDataset(args.dataset, raw_dir=args.dataset_path)

    # add self loop. We add self loop for each graph here since the function "add_self_loop" does not
    # support batch graph.
    for i in range(len(dataset)):
        dataset.graph_lists[i] = dgl.remove_self_loop(dataset.graph_lists[i])
        dataset.graph_lists[i] = dgl.add_self_loop(dataset.graph_lists[i])
105

106
107
108
109
110
111
112
113
114
115
116
117
    # preprocess: use node degree/label as node feature
    if args.degree_as_feature:
        dataset = degree_as_feature(dataset)
        mode = "concat"
    else:
        mode = "replace"
    dataset = node_label_as_feature(dataset, mode=mode)

    num_training = int(len(dataset) * 0.9)
    num_test = len(dataset) - num_training
    train_set, test_set = random_split(dataset, [num_training, num_test])

118
119
120
121
122
123
    train_loader = GraphDataLoader(
        train_set, batch_size=args.batch_size, shuffle=True, num_workers=1
    )
    test_loader = GraphDataLoader(
        test_set, batch_size=args.batch_size, num_workers=1
    )
124
125

    device = torch.device(args.device)
126

127
128
129
130
    # Step 2: Create model =================================================================== #
    num_feature, num_classes, _ = dataset.statistics()
    args.in_dim = int(num_feature)
    args.out_dim = int(num_classes)
131
132
    args.edge_feat_dim = 0  # No edge feature in datasets that we use.

133
134
135
    model = GraphClassifier(args).to(device)

    # Step 3: Create training components ===================================================== #
136
137
138
139
140
141
    optimizer = torch.optim.Adam(
        model.parameters(),
        lr=args.lr,
        amsgrad=True,
        weight_decay=args.weight_decay,
    )
142
143
144
145
146
147
148

    # Step 4: training epoches =============================================================== #
    best_test_acc = 0.0
    best_epoch = -1
    train_times = []
    for e in range(args.epochs):
        s_time = time()
149
150
151
        train_loss = train(
            model, optimizer, train_loader, device, e, args.epochs
        )
152
153
154
155
156
157
158
        train_times.append(time() - s_time)
        test_acc = test(model, test_loader, device)
        if test_acc > best_test_acc:
            best_test_acc = test_acc
            best_epoch = e + 1

        if (e + 1) % args.print_every == 0:
159
160
161
            log_format = (
                "Epoch {}: loss={:.4f}, test_acc={:.4f}, best_test_acc={:.4f}"
            )
162
            print(log_format.format(e + 1, train_loss, test_acc, best_test_acc))
163
164
165
    print(
        "Best Epoch {}, final test acc {:.4f}".format(best_epoch, best_test_acc)
    )
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    return best_test_acc, sum(train_times) / len(train_times)


if __name__ == "__main__":
    args = parse_args()
    res = []
    train_times = []
    for i in range(args.num_trials):
        print("Trial {}/{}".format(i + 1, args.num_trials))
        acc, train_time = main(args)
        # acc, train_time = 0, 0
        res.append(acc)
        train_times.append(train_time)

    mean, err_bd = get_stats(res, conf_interval=False)
    print("mean acc: {:.4f}, error bound: {:.4f}".format(mean, err_bd))

183
184
185
186
187
188
189
190
191
192
193
    out_dict = {
        "hyper-parameters": vars(args),
        "result_date": str(datetime.now()),
        "result": "{:.4f}(+-{:.4f})".format(mean, err_bd),
        "train_time": "{:.4f}".format(sum(train_times) / len(train_times)),
        "details": res,
    }

    with open(
        os.path.join(args.output_path, "{}.log".format(args.dataset)), "w"
    ) as f:
194
        json.dump(out_dict, f, sort_keys=True, indent=4)