main.py 3.88 KB
Newer Older
1
import argparse
2
import warnings
3

4
import numpy as np
5
6
import torch as th
import torch.nn as nn
7
8
from aug import aug
from dataset import load
9
from eval import label_classification
10
from model import Grace
11

12
warnings.filterwarnings("ignore")
13

14
15

def count_parameters(model):
16
17
18
    return sum(
        [np.prod(p.size()) for p in model.parameters() if p.requires_grad]
    )
19
20


21
parser = argparse.ArgumentParser()
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
parser.add_argument("--dataname", type=str, default="cora")
parser.add_argument("--gpu", type=int, default=0)
parser.add_argument("--split", type=str, default="random")

parser.add_argument(
    "--epochs", type=int, default=500, help="Number of training periods."
)
parser.add_argument("--lr", type=float, default=0.001, help="Learning rate.")
parser.add_argument("--wd", type=float, default=1e-5, help="Weight decay.")
parser.add_argument("--temp", type=float, default=1.0, help="Temperature.")

parser.add_argument("--act_fn", type=str, default="relu")

parser.add_argument(
    "--hid_dim", type=int, default=256, help="Hidden layer dim."
)
parser.add_argument(
    "--out_dim", type=int, default=256, help="Output layer dim."
)

parser.add_argument(
    "--num_layers", type=int, default=2, help="Number of GNN layers."
)
parser.add_argument(
    "--der1",
    type=float,
    default=0.2,
    help="Drop edge ratio of the 1st augmentation.",
)
parser.add_argument(
    "--der2",
    type=float,
    default=0.2,
    help="Drop edge ratio of the 2nd augmentation.",
)
parser.add_argument(
    "--dfr1",
    type=float,
    default=0.2,
    help="Drop feature ratio of the 1st augmentation.",
)
parser.add_argument(
    "--dfr2",
    type=float,
    default=0.2,
    help="Drop feature ratio of the 2nd augmentation.",
)
69

70
71
72
args = parser.parse_args()

if args.gpu != -1 and th.cuda.is_available():
73
    args.device = "cuda:{}".format(args.gpu)
74
else:
75
    args.device = "cpu"
76

77
if __name__ == "__main__":
78
    # Step 1: Load hyperparameters =================================================================== #
79
80
81
    lr = args.lr
    hid_dim = args.hid_dim
    out_dim = args.out_dim
82

83
    num_layers = args.num_layers
84
    act_fn = ({"relu": nn.ReLU(), "prelu": nn.PReLU()})[args.act_fn]
85

86
87
88
89
    drop_edge_rate_1 = args.der1
    drop_edge_rate_2 = args.der2
    drop_feature_rate_1 = args.dfr1
    drop_feature_rate_2 = args.dfr2
90

91
92
93
    temp = args.temp
    epochs = args.epochs
    wd = args.wd
94
95
96
97
98
99
100
101

    # Step 2: Prepare data =================================================================== #
    graph, feat, labels, train_mask, test_mask = load(args.dataname)
    in_dim = feat.shape[1]

    # Step 3: Create model =================================================================== #
    model = Grace(in_dim, hid_dim, out_dim, num_layers, act_fn, temp)
    model = model.to(args.device)
102
    print(f"# params: {count_parameters(model)}")
103
104
105

    optimizer = th.optim.Adam(model.parameters(), lr=lr, weight_decay=wd)

106
    # Step 4: Training =======================================================================
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    for epoch in range(epochs):
        model.train()
        optimizer.zero_grad()
        graph1, feat1 = aug(graph, feat, drop_feature_rate_1, drop_edge_rate_1)
        graph2, feat2 = aug(graph, feat, drop_feature_rate_2, drop_edge_rate_2)

        graph1 = graph1.to(args.device)
        graph2 = graph2.to(args.device)

        feat1 = feat1.to(args.device)
        feat2 = feat2.to(args.device)

        loss = model(graph1, graph2, feat1, feat2)
        loss.backward()
        optimizer.step()

123
        print(f"Epoch={epoch:03d}, loss={loss.item():.4f}")
124
125

    # Step 5: Linear evaluation ============================================================== #
126
127
    print("=== Final ===")

128
129
130
131
132
    graph = graph.add_self_loop()
    graph = graph.to(args.device)
    feat = feat.to(args.device)
    embeds = model.get_embedding(graph, feat)

133
134
135
136
    """Evaluation Embeddings  """
    label_classification(
        embeds, labels, train_mask, test_mask, split=args.split
    )