train_main.py 1.77 KB
Newer Older
KounianhuaDu's avatar
KounianhuaDu committed
1
import argparse
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
2
import os
KounianhuaDu's avatar
KounianhuaDu committed
3
4
5
6
7

import torch as th
import torch.nn as nn

from dgl import save_graphs
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
8
9
10
11
12
13
14

from dgl.data import (
    BACommunityDataset,
    BAShapeDataset,
    TreeCycleDataset,
    TreeGridDataset,
)
15
from models import Model
KounianhuaDu's avatar
KounianhuaDu committed
16
17


18
def main(args):
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
19
    if args.dataset == "BAShape":
20
        dataset = BAShapeDataset(seed=0)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
21
    elif args.dataset == "BACommunity":
22
        dataset = BACommunityDataset(seed=0)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
23
    elif args.dataset == "TreeCycle":
24
        dataset = TreeCycleDataset(seed=0)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
25
    elif args.dataset == "TreeGrid":
26
27
28
        dataset = TreeGridDataset(seed=0)

    graph = dataset[0]
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
29
30
    labels = graph.ndata["label"]
    n_feats = graph.ndata["feat"]
31
    num_classes = dataset.num_classes
KounianhuaDu's avatar
KounianhuaDu committed
32

33
    model = Model(n_feats.shape[-1], num_classes)
KounianhuaDu's avatar
KounianhuaDu committed
34
    loss_fn = nn.CrossEntropyLoss()
35
    optim = th.optim.Adam(model.parameters(), lr=0.001)
KounianhuaDu's avatar
KounianhuaDu committed
36

37
38
39
40
41
    for epoch in range(500):
        model.train()
        # For demo purpose, we train the model on all datapoints
        # In practice, you should train only on the training datapoints
        logits = model(graph, n_feats)
KounianhuaDu's avatar
KounianhuaDu committed
42
43
        loss = loss_fn(logits, labels)
        acc = th.sum(logits.argmax(dim=1) == labels).item() / len(labels)
44

KounianhuaDu's avatar
KounianhuaDu committed
45
46
47
48
        optim.zero_grad()
        loss.backward()
        optim.step()

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
49
        print(f"In Epoch: {epoch}; Acc: {acc}; Loss: {loss.item()}")
KounianhuaDu's avatar
KounianhuaDu committed
50

51
    model_stat_dict = model.state_dict()
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
52
    model_path = os.path.join("./", f"model_{args.dataset}.pth")
KounianhuaDu's avatar
KounianhuaDu committed
53
54
    th.save(model_stat_dict, model_path)

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
55
56
57
58
59
60
61
62
63

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Dummy model training")
    parser.add_argument(
        "--dataset",
        type=str,
        default="BAShape",
        choices=["BAShape", "BACommunity", "TreeCycle", "TreeGrid"],
    )
KounianhuaDu's avatar
KounianhuaDu committed
64
65
66
67
    args = parser.parse_args()
    print(args)

    main(args)