ppi.py 5.14 KB
Newer Older
1
2
3
4
5
6
import argparse

import numpy as np
import torch as th
import torch.optim as optim

7
8
from dgl.data import PPIDataset
from dgl.dataloading import GraphDataLoader
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
9
10
from model import GeniePath, GeniePathLazy
from sklearn.metrics import f1_score
11
12


13
def evaluate(model, loss_fn, dataloader, device="cpu"):
14
15
16
17
18
    loss = 0
    f1 = 0
    num_blocks = 0
    for subgraph in dataloader:
        subgraph = subgraph.to(device)
19
20
        label = subgraph.ndata["label"].to(device)
        feat = subgraph.ndata["feat"]
21
22
23
24
        logits = model(subgraph, feat)

        # compute loss
        loss += loss_fn(logits, label).item()
25
26
        predict = np.where(logits.data.cpu().numpy() >= 0.0, 1, 0)
        f1 += f1_score(label.cpu(), predict, average="micro")
27
28
29
30
31
32
33
34
        num_blocks += 1

    return f1 / num_blocks, loss / num_blocks


def main(args):
    # Step 1: Prepare graph data and retrieve train/validation/test index ============================= #
    # Load dataset
35
36
37
38
39
40
41
42
43
    train_dataset = PPIDataset(mode="train")
    valid_dataset = PPIDataset(mode="valid")
    test_dataset = PPIDataset(mode="test")
    train_dataloader = GraphDataLoader(
        train_dataset, batch_size=args.batch_size
    )
    valid_dataloader = GraphDataLoader(
        valid_dataset, batch_size=args.batch_size
    )
44
45
46
47
    test_dataloader = GraphDataLoader(test_dataset, batch_size=args.batch_size)

    # check cuda
    if args.gpu >= 0 and th.cuda.is_available():
48
        device = "cuda:{}".format(args.gpu)
49
    else:
50
        device = "cpu"
51
52
53
54
55

    num_classes = train_dataset.num_labels

    # Extract node features
    graph = train_dataset[0]
56
    feat = graph.ndata["feat"]
57
58
59

    # Step 2: Create model =================================================================== #
    if args.lazy:
60
61
62
63
64
65
66
67
        model = GeniePathLazy(
            in_dim=feat.shape[-1],
            out_dim=num_classes,
            hid_dim=args.hid_dim,
            num_layers=args.num_layers,
            num_heads=args.num_heads,
            residual=args.residual,
        )
68
    else:
69
70
71
72
73
74
75
76
        model = GeniePath(
            in_dim=feat.shape[-1],
            out_dim=num_classes,
            hid_dim=args.hid_dim,
            num_layers=args.num_layers,
            num_heads=args.num_heads,
            residual=args.residual,
        )
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

    model = model.to(device)

    # Step 3: Create training components ===================================================== #
    loss_fn = th.nn.BCEWithLogitsLoss()
    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    # Step 4: training epochs =============================================================== #
    for epoch in range(args.max_epoch):
        model.train()
        tr_loss = 0
        tr_f1 = 0
        num_blocks = 0
        for subgraph in train_dataloader:
            subgraph = subgraph.to(device)
92
93
            label = subgraph.ndata["label"]
            feat = subgraph.ndata["feat"]
94
95
96
97
98
            logits = model(subgraph, feat)

            # compute loss
            batch_loss = loss_fn(logits, label)
            tr_loss += batch_loss.item()
99
100
            tr_predict = np.where(logits.data.cpu().numpy() >= 0.0, 1, 0)
            tr_f1 += f1_score(label.cpu(), tr_predict, average="micro")
101
102
103
104
105
106
107
108
109
110
111
            num_blocks += 1

            # backward
            optimizer.zero_grad()
            batch_loss.backward()
            optimizer.step()

        # validation
        model.eval()
        val_f1, val_loss = evaluate(model, loss_fn, valid_dataloader, device)

112
113
114
115
116
117
118
119
120
        print(
            "In epoch {}, Train F1: {:.4f} | Train Loss: {:.4f}; Valid F1: {:.4f} | Valid loss: {:.4f}".format(
                epoch,
                tr_f1 / num_blocks,
                tr_loss / num_blocks,
                val_f1,
                val_loss,
            )
        )
121
122
123
124
125

    # Test after all epoch
    model.eval()
    test_f1, test_loss = evaluate(model, loss_fn, test_dataloader, device)

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    print("Test F1: {:.4f} | Test loss: {:.4f}".format(test_f1, test_loss))


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="GeniePath")
    parser.add_argument(
        "--gpu", type=int, default=-1, help="GPU Index. Default: -1, using CPU."
    )
    parser.add_argument(
        "--hid_dim", type=int, default=256, help="Hidden layer dimension"
    )
    parser.add_argument(
        "--num_layers", type=int, default=3, help="Number of GeniePath layers"
    )
    parser.add_argument(
        "--max_epoch",
        type=int,
        default=1000,
        help="The max number of epochs. Default: 1000",
    )
    parser.add_argument(
        "--lr",
        type=float,
        default=0.0004,
        help="Learning rate. Default: 0.0004",
    )
    parser.add_argument(
        "--num_heads",
        type=int,
        default=1,
        help="Number of head in breadth function. Default: 1",
    )
    parser.add_argument(
        "--residual", type=bool, default=False, help="Residual in GAT or not"
    )
    parser.add_argument(
        "--batch_size",
        type=int,
        default=2,
        help="Batch size of graph dataloader",
    )
    parser.add_argument(
        "--lazy", type=bool, default=False, help="Variant GeniePath-Lazy"
    )
170
171
172
173
174

    args = parser.parse_args()
    print(args)
    th.manual_seed(16)
    main(args)