train.py 3.24 KB
Newer Older
1
2
import argparse

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
3
4
5
import dgl
import dgl.nn as dglnn

6
import torch
7
import torch.nn as nn
8
import torch.nn.functional as F
9
from dgl import AddSelfLoop
10
11
from dgl.data import CiteseerGraphDataset, CoraGraphDataset, PubmedGraphDataset

12

13
14
15
16
17
class GCN(nn.Module):
    def __init__(self, in_size, hid_size, out_size):
        super().__init__()
        self.layers = nn.ModuleList()
        # two-layer GCN
18
19
20
        self.layers.append(
            dglnn.GraphConv(in_size, hid_size, activation=F.relu)
        )
21
22
23
24
25
26
27
28
29
30
        self.layers.append(dglnn.GraphConv(hid_size, out_size))
        self.dropout = nn.Dropout(0.5)

    def forward(self, g, features):
        h = features
        for i, layer in enumerate(self.layers):
            if i != 0:
                h = self.dropout(h)
            h = layer(g, h)
        return h
31
32


33
def evaluate(g, features, labels, mask, model):
34
35
    model.eval()
    with torch.no_grad():
36
        logits = model(g, features)
37
38
39
40
41
42
        logits = logits[mask]
        labels = labels[mask]
        _, indices = torch.max(logits, dim=1)
        correct = torch.sum(indices == labels)
        return correct.item() * 1.0 / len(labels)

43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
def train(g, features, labels, masks, model):
    # define train/val samples, loss function and optimizer
    train_mask = masks[0]
    val_mask = masks[1]
    loss_fcn = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=1e-2, weight_decay=5e-4)

    # training loop
    for epoch in range(200):
        model.train()
        logits = model(g, features)
        loss = loss_fcn(logits[train_mask], labels[train_mask])
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        acc = evaluate(g, features, labels, val_mask, model)
60
61
62
63
64
65
        print(
            "Epoch {:05d} | Loss {:.4f} | Accuracy {:.4f} ".format(
                epoch, loss.item(), acc
            )
        )

66

67
if __name__ == "__main__":
68
    parser = argparse.ArgumentParser()
69
70
71
72
73
74
    parser.add_argument(
        "--dataset",
        type=str,
        default="cora",
        help="Dataset name ('cora', 'citeseer', 'pubmed').",
    )
75
    args = parser.parse_args()
76
77
    print(f"Training with DGL built-in GraphConv module.")

78
    # load and preprocess dataset
79
80
81
82
    transform = (
        AddSelfLoop()
    )  # by default, it will first remove self-loops to prevent duplication
    if args.dataset == "cora":
83
        data = CoraGraphDataset(transform=transform)
84
    elif args.dataset == "citeseer":
85
        data = CiteseerGraphDataset(transform=transform)
86
    elif args.dataset == "pubmed":
87
        data = PubmedGraphDataset(transform=transform)
88
    else:
89
        raise ValueError("Unknown dataset: {}".format(args.dataset))
90
    g = data[0]
91
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
92
    g = g.int().to(device)
93
94
95
96
97
    features = g.ndata["feat"]
    labels = g.ndata["label"]
    masks = g.ndata["train_mask"], g.ndata["val_mask"], g.ndata["test_mask"]

    # create GCN model
98
99
100
101
102
    in_size = features.shape[1]
    out_size = data.num_classes
    model = GCN(in_size, 16, out_size).to(device)

    # model training
103
    print("Training...")
104
    train(g, features, labels, masks, model)
105

106
    # test the model
107
    print("Testing...")
108
109
    acc = evaluate(g, features, labels, masks[2], model)
    print("Test accuracy {:.4f}".format(acc))