model.py 13.7 KB
Newer Older
Zihao Ye's avatar
Zihao Ye committed
1
"""NN modules"""
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
2
3
import dgl.function as fn
import dgl.nn.pytorch as dglnn
Zihao Ye's avatar
Zihao Ye committed
4
5
import torch as th
import torch.nn as nn
6
from torch.nn import init
Zihao Ye's avatar
Zihao Ye committed
7

8
from utils import get_activation, to_etype_name
Zihao Ye's avatar
Zihao Ye committed
9

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class GCMCGraphConv(nn.Module):
    """Graph convolution module used in the GCMC model.

    Parameters
    ----------
    in_feats : int
        Input feature size.
    out_feats : int
        Output feature size.
    weight : bool, optional
        If True, apply a linear layer. Otherwise, aggregating the messages
        without a weight matrix or with an shared weight provided by caller.
    device: str, optional
        Which device to put data in. Useful in mix_cpu_gpu training and
        multi-gpu training
    """
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
27
28
29
30

    def __init__(
        self, in_feats, out_feats, weight=True, device=None, dropout_rate=0.0
    ):
31
32
33
        super(GCMCGraphConv, self).__init__()
        self._in_feats = in_feats
        self._out_feats = out_feats
34
        self.device = device
35
36
37
38
39
        self.dropout = nn.Dropout(dropout_rate)

        if weight:
            self.weight = nn.Parameter(th.Tensor(in_feats, out_feats))
        else:
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
40
            self.register_parameter("weight", None)
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
        self.reset_parameters()

    def reset_parameters(self):
        """Reinitialize learnable parameters."""
        if self.weight is not None:
            init.xavier_uniform_(self.weight)

    def forward(self, graph, feat, weight=None):
        """Compute graph convolution.

        Normalizer constant :math:`c_{ij}` is stored as two node data "ci"
        and "cj".

        Parameters
        ----------
        graph : DGLGraph
            The graph.
        feat : torch.Tensor
            The input feature
        weight : torch.Tensor, optional
            Optional external weight tensor.
        dropout : torch.nn.Dropout, optional
            Optional external dropout layer.

        Returns
        -------
        torch.Tensor
            The output feature
        """
        with graph.local_scope():
71
            if isinstance(feat, tuple):
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
72
73
74
                feat, _ = feat  # dst feature not used
            cj = graph.srcdata["cj"]
            ci = graph.dstdata["ci"]
75
76
77
78
79
            if self.device is not None:
                cj = cj.to(self.device)
                ci = ci.to(self.device)
            if weight is not None:
                if self.weight is not None:
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
80
81
82
83
84
                    raise DGLError(
                        "External weight is provided while at the same time the"
                        " module has defined its own weight parameter. Please"
                        " create the module with flag weight=False."
                    )
85
86
87
88
89
90
            else:
                weight = self.weight

            if weight is not None:
                feat = dot_or_identity(feat, weight, self.device)

Chang Liu's avatar
Chang Liu committed
91
            feat = feat * self.dropout(cj)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
92
93
94
95
96
            graph.srcdata["h"] = feat
            graph.update_all(
                fn.copy_u(u="h", out="m"), fn.sum(msg="m", out="h")
            )
            rst = graph.dstdata["h"]
97
98
99
100
            rst = rst * ci

        return rst

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
101

Zihao Ye's avatar
Zihao Ye committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
class GCMCLayer(nn.Module):
    r"""GCMC layer

    .. math::
        z_j^{(l+1)} = \sigma_{agg}\left[\mathrm{agg}\left(
        \sum_{j\in\mathcal{N}_1}\frac{1}{c_{ij}}W_1h_j, \ldots,
        \sum_{j\in\mathcal{N}_R}\frac{1}{c_{ij}}W_Rh_j
        \right)\right]

    After that, apply an extra output projection:

    .. math::
        h_j^{(l+1)} = \sigma_{out}W_oz_j^{(l+1)}

    The equation is applied to both user nodes and movie nodes and the parameters
    are not shared unless ``share_user_item_param`` is true.

    Parameters
    ----------
    rating_vals : list of int or float
        Possible rating values.
    user_in_units : int
        Size of user input feature
    movie_in_units : int
        Size of movie input feature
    msg_units : int
        Size of message :math:`W_rh_j`
    out_units : int
        Size of of final output user and movie features
    dropout_rate : float, optional
        Dropout rate (Default: 0.0)
    agg : str, optional
        Function to aggregate messages of different ratings.
        Could be any of the supported cross type reducers:
        "sum", "max", "min", "mean", "stack".
        (Default: "stack")
    agg_act : callable, str, optional
        Activation function :math:`sigma_{agg}`. (Default: None)
    out_act : callable, str, optional
        Activation function :math:`sigma_{agg}`. (Default: None)
    share_user_item_param : bool, optional
        If true, user node and movie node share the same set of parameters.
        Require ``user_in_units`` and ``move_in_units`` to be the same.
        (Default: False)
146
147
148
    device: str, optional
        Which device to put data in. Useful in mix_cpu_gpu training and
        multi-gpu training
Zihao Ye's avatar
Zihao Ye committed
149
    """
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

    def __init__(
        self,
        rating_vals,
        user_in_units,
        movie_in_units,
        msg_units,
        out_units,
        dropout_rate=0.0,
        agg="stack",  # or 'sum'
        agg_act=None,
        out_act=None,
        share_user_item_param=False,
        device=None,
    ):
Zihao Ye's avatar
Zihao Ye committed
165
166
167
168
169
170
171
172
173
        super(GCMCLayer, self).__init__()
        self.rating_vals = rating_vals
        self.agg = agg
        self.share_user_item_param = share_user_item_param
        self.ufc = nn.Linear(msg_units, out_units)
        if share_user_item_param:
            self.ifc = self.ufc
        else:
            self.ifc = nn.Linear(msg_units, out_units)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
174
        if agg == "stack":
Zihao Ye's avatar
Zihao Ye committed
175
176
177
178
179
180
            # divide the original msg unit size by number of ratings to keep
            # the dimensionality
            assert msg_units % len(rating_vals) == 0
            msg_units = msg_units // len(rating_vals)
        self.dropout = nn.Dropout(dropout_rate)
        self.W_r = nn.ParameterDict()
181
        subConv = {}
Zihao Ye's avatar
Zihao Ye committed
182
183
        for rating in rating_vals:
            # PyTorch parameter name can't contain "."
184
            rating = to_etype_name(rating)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
185
            rev_rating = "rev-%s" % rating
Zihao Ye's avatar
Zihao Ye committed
186
            if share_user_item_param and user_in_units == movie_in_units:
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
                self.W_r[rating] = nn.Parameter(
                    th.randn(user_in_units, msg_units)
                )
                self.W_r["rev-%s" % rating] = self.W_r[rating]
                subConv[rating] = GCMCGraphConv(
                    user_in_units,
                    msg_units,
                    weight=False,
                    device=device,
                    dropout_rate=dropout_rate,
                )
                subConv[rev_rating] = GCMCGraphConv(
                    user_in_units,
                    msg_units,
                    weight=False,
                    device=device,
                    dropout_rate=dropout_rate,
                )
Zihao Ye's avatar
Zihao Ye committed
205
            else:
206
                self.W_r = None
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
                subConv[rating] = GCMCGraphConv(
                    user_in_units,
                    msg_units,
                    weight=True,
                    device=device,
                    dropout_rate=dropout_rate,
                )
                subConv[rev_rating] = GCMCGraphConv(
                    movie_in_units,
                    msg_units,
                    weight=True,
                    device=device,
                    dropout_rate=dropout_rate,
                )
221
        self.conv = dglnn.HeteroGraphConv(subConv, aggregate=agg)
Zihao Ye's avatar
Zihao Ye committed
222
223
        self.agg_act = get_activation(agg_act)
        self.out_act = get_activation(out_act)
224
        self.device = device
Zihao Ye's avatar
Zihao Ye committed
225
226
        self.reset_parameters()

227
228
    def partial_to(self, device):
        """Put parameters into device except W_r
229

230
231
232
233
234
235
236
237
238
239
240
241
        Parameters
        ----------
        device : torch device
            Which device the parameters are put in.
        """
        assert device == self.device
        if device is not None:
            self.ufc.cuda(device)
            if self.share_user_item_param is False:
                self.ifc.cuda(device)
            self.dropout.cuda(device)

Zihao Ye's avatar
Zihao Ye committed
242
243
244
245
246
247
248
249
250
251
    def reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def forward(self, graph, ufeat=None, ifeat=None):
        """Forward function

        Parameters
        ----------
peizhou001's avatar
peizhou001 committed
252
        graph : DGLGraph
Zihao Ye's avatar
Zihao Ye committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
            User-movie rating graph. It should contain two node types: "user"
            and "movie" and many edge types each for one rating value.
        ufeat : torch.Tensor, optional
            User features. If None, using an identity matrix.
        ifeat : torch.Tensor, optional
            Movie features. If None, using an identity matrix.

        Returns
        -------
        new_ufeat : torch.Tensor
            New user features
        new_ifeat : torch.Tensor
            New movie features
        """
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
267
        in_feats = {"user": ufeat, "movie": ifeat}
268
        mod_args = {}
Zihao Ye's avatar
Zihao Ye committed
269
        for i, rating in enumerate(self.rating_vals):
270
            rating = to_etype_name(rating)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
271
272
273
274
275
276
277
            rev_rating = "rev-%s" % rating
            mod_args[rating] = (
                self.W_r[rating] if self.W_r is not None else None,
            )
            mod_args[rev_rating] = (
                self.W_r[rev_rating] if self.W_r is not None else None,
            )
278
        out_feats = self.conv(graph, in_feats, mod_args=mod_args)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
279
280
        ufeat = out_feats["user"]
        ifeat = out_feats["movie"]
281
282
283
        ufeat = ufeat.view(ufeat.shape[0], -1)
        ifeat = ifeat.view(ifeat.shape[0], -1)

Zihao Ye's avatar
Zihao Ye committed
284
285
286
287
288
289
290
291
292
        # fc and non-linear
        ufeat = self.agg_act(ufeat)
        ifeat = self.agg_act(ifeat)
        ufeat = self.dropout(ufeat)
        ifeat = self.dropout(ifeat)
        ufeat = self.ufc(ufeat)
        ifeat = self.ifc(ifeat)
        return self.out_act(ufeat), self.out_act(ifeat)

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
293

Zihao Ye's avatar
Zihao Ye committed
294
class BiDecoder(nn.Module):
295
296
297
298
    r"""Bi-linear decoder.

    Given a bipartite graph G, for each edge (i, j) ~ G, compute the likelihood
    of it being class r by:
Zihao Ye's avatar
Zihao Ye committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312

    .. math::
        p(M_{ij}=r) = \text{softmax}(u_i^TQ_rv_j)

    The trainable parameter :math:`Q_r` is further decomposed to a linear
    combination of basis weight matrices :math:`P_s`:

    .. math::
        Q_r = \sum_{s=1}^{b} a_{rs}P_s

    Parameters
    ----------
    in_units : int
        Size of input user and movie features
313
314
315
    num_classes : int
        Number of classes.
    num_basis : int, optional
Zihao Ye's avatar
Zihao Ye committed
316
317
318
319
        Number of basis. (Default: 2)
    dropout_rate : float, optional
        Dropout raite (Default: 0.0)
    """
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
320
321

    def __init__(self, in_units, num_classes, num_basis=2, dropout_rate=0.0):
Zihao Ye's avatar
Zihao Ye committed
322
        super(BiDecoder, self).__init__()
323
        self._num_basis = num_basis
Zihao Ye's avatar
Zihao Ye committed
324
        self.dropout = nn.Dropout(dropout_rate)
325
        self.Ps = nn.ParameterList(
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
326
327
            nn.Parameter(th.randn(in_units, in_units)) for _ in range(num_basis)
        )
328
        self.combine_basis = nn.Linear(self._num_basis, num_classes, bias=False)
Zihao Ye's avatar
Zihao Ye committed
329
330
331
332
333
334
335
336
337
338
339
340
        self.reset_parameters()

    def reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def forward(self, graph, ufeat, ifeat):
        """Forward function.

        Parameters
        ----------
peizhou001's avatar
peizhou001 committed
341
        graph : DGLGraph
Zihao Ye's avatar
Zihao Ye committed
342
343
344
345
346
347
348
349
350
351
352
            "Flattened" user-movie graph with only one edge type.
        ufeat : th.Tensor
            User embeddings. Shape: (|V_u|, D)
        ifeat : th.Tensor
            Movie embeddings. Shape: (|V_m|, D)

        Returns
        -------
        th.Tensor
            Predicting scores for each user-movie edge.
        """
353
354
355
        with graph.local_scope():
            ufeat = self.dropout(ufeat)
            ifeat = self.dropout(ifeat)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
356
            graph.nodes["movie"].data["h"] = ifeat
357
358
            basis_out = []
            for i in range(self._num_basis):
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
359
360
361
                graph.nodes["user"].data["h"] = ufeat @ self.Ps[i]
                graph.apply_edges(fn.u_dot_v("h", "h", "sr"))
                basis_out.append(graph.edata["sr"])
362
            out = th.cat(basis_out, dim=1)
Chang Liu's avatar
Chang Liu committed
363
            out = self.combine_basis(out)
364
365
        return out

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
366

367
class DenseBiDecoder(nn.Module):
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
    r"""Dense bi-linear decoder.

    Dense implementation of the bi-linear decoder used in GCMC. Suitable when
    the graph can be efficiently represented by a pair of arrays (one for source
    nodes; one for destination nodes).

    Parameters
    ----------
    in_units : int
        Size of input user and movie features
    num_classes : int
        Number of classes.
    num_basis : int, optional
        Number of basis. (Default: 2)
    dropout_rate : float, optional
        Dropout raite (Default: 0.0)
    """
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
385
386

    def __init__(self, in_units, num_classes, num_basis=2, dropout_rate=0.0):
387
388
389
390
391
392
393
394
395
396
397
        super().__init__()
        self._num_basis = num_basis
        self.dropout = nn.Dropout(dropout_rate)
        self.P = nn.Parameter(th.randn(num_basis, in_units, in_units))
        self.combine_basis = nn.Linear(self._num_basis, num_classes, bias=False)
        self.reset_parameters()

    def reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

    def forward(self, ufeat, ifeat):
        """Forward function.

        Compute logits for each pair ``(ufeat[i], ifeat[i])``.

        Parameters
        ----------
        ufeat : th.Tensor
            User embeddings. Shape: (B, D)
        ifeat : th.Tensor
            Movie embeddings. Shape: (B, D)

        Returns
        -------
        th.Tensor
            Predicting scores for each user-movie edge. Shape: (B, num_classes)
        """
Zihao Ye's avatar
Zihao Ye committed
416
417
        ufeat = self.dropout(ufeat)
        ifeat = self.dropout(ifeat)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
418
        out = th.einsum("ai,bij,aj->ab", ufeat, self.P, ifeat)
419
        out = self.combine_basis(out)
Zihao Ye's avatar
Zihao Ye committed
420
421
        return out

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
422

423
def dot_or_identity(A, B, device=None):
Zihao Ye's avatar
Zihao Ye committed
424
425
426
    # if A is None, treat as identity matrix
    if A is None:
        return B
427
428
429
430
431
    elif len(A.shape) == 1:
        if device is None:
            return B[A]
        else:
            return B[A].to(device)
Zihao Ye's avatar
Zihao Ye committed
432
433
    else:
        return A @ B