model_sampling.py 8.05 KB
Newer Older
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
1
import dgl.function as fn
2
import torch as th
3
4
5
6
7
8
9
10
11
12
import torch.nn as nn
from dgl.nn.functional import edge_softmax


class MLP(nn.Module):
    def __init__(self, in_dim, out_dim):
        super().__init__()
        self.W = nn.Linear(in_dim, out_dim)

    def apply_edges(self, edges):
13
14
15
        h_e = edges.data["h"]
        h_u = edges.src["h"]
        h_v = edges.dst["h"]
16
        score = self.W(th.cat([h_e, h_u, h_v], -1))
17
        return {"score": score}
18
19
20

    def forward(self, g, e_feat, u_feat, v_feat):
        with g.local_scope():
21
22
23
            g.edges["forward"].data["h"] = e_feat
            g.nodes["u"].data["h"] = u_feat
            g.nodes["v"].data["h"] = v_feat
24
            g.apply_edges(self.apply_edges, etype="forward")
25
            return g.edges["forward"].data["score"]
26
27
28
29
30


class GASConv(nn.Module):
    """One layer of GAS."""

31
32
33
34
35
36
37
38
39
40
41
    def __init__(
        self,
        e_in_dim,
        u_in_dim,
        v_in_dim,
        e_out_dim,
        u_out_dim,
        v_out_dim,
        activation=None,
        dropout=0,
    ):
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
        super(GASConv, self).__init__()

        self.activation = activation
        self.dropout = nn.Dropout(dropout)

        self.e_linear = nn.Linear(e_in_dim, e_out_dim)
        self.u_linear = nn.Linear(u_in_dim, e_out_dim)
        self.v_linear = nn.Linear(v_in_dim, e_out_dim)

        self.W_ATTN_u = nn.Linear(u_in_dim, v_in_dim + e_in_dim)
        self.W_ATTN_v = nn.Linear(v_in_dim, u_in_dim + e_in_dim)

        # the proportion of h_u and h_Nu are specified as 1/2 in formula 8
        nu_dim = int(u_out_dim / 2)
        nv_dim = int(v_out_dim / 2)

        self.W_u = nn.Linear(v_in_dim + e_in_dim, nu_dim)
        self.W_v = nn.Linear(u_in_dim + e_in_dim, nv_dim)

        self.Vu = nn.Linear(u_in_dim, u_out_dim - nu_dim)
        self.Vv = nn.Linear(v_in_dim, v_out_dim - nv_dim)

    def forward(self, g, f_feat, b_feat, u_feat, v_feat):
65
66
67
68
69
70
        g.srcnodes["u"].data["h"] = u_feat
        g.srcnodes["v"].data["h"] = v_feat
        g.dstnodes["u"].data["h"] = u_feat[: g.number_of_dst_nodes(ntype="u")]
        g.dstnodes["v"].data["h"] = v_feat[: g.number_of_dst_nodes(ntype="v")]
        g.edges["forward"].data["h"] = f_feat
        g.edges["backward"].data["h"] = b_feat
71
72

        # formula 3 and 4 (optimized implementation to save memory)
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
        g.srcnodes["u"].data.update(
            {"he_u": self.u_linear(g.srcnodes["u"].data["h"])}
        )
        g.srcnodes["v"].data.update(
            {"he_v": self.v_linear(g.srcnodes["v"].data["h"])}
        )
        g.dstnodes["u"].data.update(
            {"he_u": self.u_linear(g.dstnodes["u"].data["h"])}
        )
        g.dstnodes["v"].data.update(
            {"he_v": self.v_linear(g.dstnodes["v"].data["h"])}
        )
        g.edges["forward"].data.update({"he_e": self.e_linear(f_feat)})
        g.edges["backward"].data.update({"he_e": self.e_linear(b_feat)})
        g.apply_edges(
            lambda edges: {
                "he": edges.data["he_e"] + edges.dst["he_u"] + edges.src["he_v"]
            },
            etype="backward",
        )
        g.apply_edges(
            lambda edges: {
                "he": edges.data["he_e"] + edges.src["he_u"] + edges.dst["he_v"]
            },
            etype="forward",
        )
        hf = g.edges["forward"].data["he"]
        hb = g.edges["backward"].data["he"]
101
102
103
104
105
        if self.activation is not None:
            hf = self.activation(hf)
            hb = self.activation(hb)

        # formula 6
106
107
108
109
110
111
112
113
114
115
116
117
        g.apply_edges(
            lambda edges: {
                "h_ve": th.cat([edges.src["h"], edges.data["h"]], -1)
            },
            etype="backward",
        )
        g.apply_edges(
            lambda edges: {
                "h_ue": th.cat([edges.src["h"], edges.data["h"]], -1)
            },
            etype="forward",
        )
118
119

        # formula 7, self-attention
120
121
122
123
124
125
126
127
128
129
130
131
        g.srcnodes["u"].data["h_att_u"] = self.W_ATTN_u(
            g.srcnodes["u"].data["h"]
        )
        g.srcnodes["v"].data["h_att_v"] = self.W_ATTN_v(
            g.srcnodes["v"].data["h"]
        )
        g.dstnodes["u"].data["h_att_u"] = self.W_ATTN_u(
            g.dstnodes["u"].data["h"]
        )
        g.dstnodes["v"].data["h_att_v"] = self.W_ATTN_v(
            g.dstnodes["v"].data["h"]
        )
132
133

        # Step 1: dot product
134
135
        g.apply_edges(fn.e_dot_v("h_ve", "h_att_u", "edotv"), etype="backward")
        g.apply_edges(fn.e_dot_v("h_ue", "h_att_v", "edotv"), etype="forward")
136
137

        # Step 2. softmax
138
139
140
141
142
143
        g.edges["backward"].data["sfm"] = edge_softmax(
            g["backward"], g.edges["backward"].data["edotv"]
        )
        g.edges["forward"].data["sfm"] = edge_softmax(
            g["forward"], g.edges["forward"].data["edotv"]
        )
144
145

        # Step 3. Broadcast softmax value to each edge, and then attention is done
146
147
148
149
150
151
152
153
        g.apply_edges(
            lambda edges: {"attn": edges.data["h_ve"] * edges.data["sfm"]},
            etype="backward",
        )
        g.apply_edges(
            lambda edges: {"attn": edges.data["h_ue"] * edges.data["sfm"]},
            etype="forward",
        )
154
155

        # Step 4. Aggregate attention to dst,user nodes, so formula 7 is done
156
157
158
159
160
161
        g.update_all(
            fn.copy_e("attn", "m"), fn.sum("m", "agg_u"), etype="backward"
        )
        g.update_all(
            fn.copy_e("attn", "m"), fn.sum("m", "agg_v"), etype="forward"
        )
162
163

        # formula 5
164
165
        h_nu = self.W_u(g.dstnodes["u"].data["agg_u"])
        h_nv = self.W_v(g.dstnodes["v"].data["agg_v"])
166
167
168
169
170
171
172
173
174
175
176
        if self.activation is not None:
            h_nu = self.activation(h_nu)
            h_nv = self.activation(h_nv)

        # Dropout
        hf = self.dropout(hf)
        hb = self.dropout(hb)
        h_nu = self.dropout(h_nu)
        h_nv = self.dropout(h_nv)

        # formula 8
177
178
        hu = th.cat([self.Vu(g.dstnodes["u"].data["h"]), h_nu], -1)
        hv = th.cat([self.Vv(g.dstnodes["v"].data["h"]), h_nv], -1)
179
180
181
182
183

        return hf, hb, hu, hv


class GAS(nn.Module):
184
185
186
187
188
189
190
191
192
193
194
195
196
    def __init__(
        self,
        e_in_dim,
        u_in_dim,
        v_in_dim,
        e_hid_dim,
        u_hid_dim,
        v_hid_dim,
        out_dim,
        num_layers=2,
        dropout=0.0,
        activation=None,
    ):
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
        super(GAS, self).__init__()
        self.e_in_dim = e_in_dim
        self.u_in_dim = u_in_dim
        self.v_in_dim = v_in_dim
        self.e_hid_dim = e_hid_dim
        self.u_hid_dim = u_hid_dim
        self.v_hid_dim = v_hid_dim
        self.out_dim = out_dim
        self.num_layer = num_layers
        self.dropout = dropout
        self.activation = activation
        self.predictor = MLP(e_hid_dim + u_hid_dim + v_hid_dim, out_dim)
        self.layers = nn.ModuleList()

        # Input layer
212
213
214
215
216
217
218
219
220
221
222
223
        self.layers.append(
            GASConv(
                self.e_in_dim,
                self.u_in_dim,
                self.v_in_dim,
                self.e_hid_dim,
                self.u_hid_dim,
                self.v_hid_dim,
                activation=self.activation,
                dropout=self.dropout,
            )
        )
224
225
226

        # Hidden layers with n - 1 CompGraphConv layers
        for i in range(self.num_layer - 1):
227
228
229
230
231
232
233
234
235
236
237
238
            self.layers.append(
                GASConv(
                    self.e_hid_dim,
                    self.u_hid_dim,
                    self.v_hid_dim,
                    self.e_hid_dim,
                    self.u_hid_dim,
                    self.v_hid_dim,
                    activation=self.activation,
                    dropout=self.dropout,
                )
            )
239
240
241
242

    def forward(self, subgraph, blocks, f_feat, b_feat, u_feat, v_feat):
        # Forward of n layers of GAS
        for layer, block in zip(self.layers, blocks):
243
244
245
246
247
248
249
            f_feat, b_feat, u_feat, v_feat = layer(
                block,
                f_feat[: block.num_edges(etype="forward")],
                b_feat[: block.num_edges(etype="backward")],
                u_feat,
                v_feat,
            )
250
251

        # return the result of final prediction layer
252
253
254
255
256
257
        return self.predictor(
            subgraph,
            f_feat[: subgraph.num_edges(etype="forward")],
            u_feat,
            v_feat,
        )