main.py 3.28 KB
Newer Older
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
1
import dgl
WangYQ's avatar
WangYQ committed
2
3
4
5
6
import torch as th
import torch.optim as optim
import utils
from model import EGES
from sampler import Sampler
7
8
9
from sklearn import metrics
from torch.utils.data import DataLoader

WangYQ's avatar
WangYQ committed
10
11
12

def train(args, train_g, sku_info, num_skus, num_brands, num_shops, num_cates):
    sampler = Sampler(
13
14
15
16
17
        train_g,
        args.walk_length,
        args.num_walks,
        args.window_size,
        args.num_negative,
WangYQ's avatar
WangYQ committed
18
19
20
21
22
23
24
25
26
    )
    # for each node in the graph, we sample pos and neg
    # pairs for it, and feed these sampled pairs into the model.
    # (nodes in the graph are of course batched before sampling)
    dataloader = DataLoader(
        th.arange(train_g.num_nodes()),
        # this is the batch_size of input nodes
        batch_size=args.batch_size,
        shuffle=True,
27
        collate_fn=lambda x: sampler.sample(x, sku_info),
WangYQ's avatar
WangYQ committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    )
    model = EGES(args.dim, num_skus, num_brands, num_shops, num_cates)
    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    for epoch in range(args.epochs):
        epoch_total_loss = 0
        for step, (srcs, dsts, labels) in enumerate(dataloader):
            # the batch size of output pairs is unfixed
            # TODO: shuffle the triples?
            srcs_embeds, dsts_embeds = model(srcs, dsts)
            loss = model.loss(srcs_embeds, dsts_embeds, labels)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            epoch_total_loss += loss.item()

            if step % args.log_every == 0:
47
48
49
50
51
                print(
                    "Epoch {:05d} | Step {:05d} | Step Loss {:.4f} | Epoch Avg Loss: {:.4f}".format(
                        epoch, step, loss.item(), epoch_total_loss / (step + 1)
                    )
                )
WangYQ's avatar
WangYQ committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

        eval(model, test_g, sku_info)

    return model


def eval(model, test_graph, sku_info):
    preds, labels = [], []
    for edge in test_graph:
        src = th.tensor(sku_info[edge.src.numpy()[0]]).view(1, 4)
        dst = th.tensor(sku_info[edge.dst.numpy()[0]]).view(1, 4)
        # (1, dim)
        src = model.query_node_embed(src)
        dst = model.query_node_embed(dst)
        # (1, dim) -> (1, dim) -> (1, )
        logit = th.sigmoid(th.sum(src * dst))
        preds.append(logit.detach().numpy().tolist())
        labels.append(edge.label)

    fpr, tpr, thresholds = metrics.roc_curve(labels, preds, pos_label=1)

    print("Evaluate link prediction AUC: {:.4f}".format(metrics.auc(fpr, tpr)))


if __name__ == "__main__":
    args = utils.init_args()

    valid_sku_raw_ids = utils.get_valid_sku_set(args.item_info_data)

    g, sku_encoder, sku_decoder = utils.construct_graph(
82
        args.action_data, args.session_interval_sec, valid_sku_raw_ids
WangYQ's avatar
WangYQ committed
83
84
85
86
    )

    train_g, test_g = utils.split_train_test_graph(g)

87
88
89
    sku_info_encoder, sku_info_decoder, sku_info = utils.encode_sku_fields(
        args.item_info_data, sku_encoder, sku_decoder
    )
WangYQ's avatar
WangYQ committed
90
91
92
93
94
95
96

    num_skus = len(sku_encoder)
    num_brands = len(sku_info_encoder["brand"])
    num_shops = len(sku_info_encoder["shop"])
    num_cates = len(sku_info_encoder["cate"])

    print(
97
98
99
        "Num skus: {}, num brands: {}, num shops: {}, num cates: {}".format(
            num_skus, num_brands, num_shops, num_cates
        )
WangYQ's avatar
WangYQ committed
100
101
    )

102
103
104
    model = train(
        args, train_g, sku_info, num_skus, num_brands, num_shops, num_cates
    )