train_faster_rcnn.py 27.6 KB
Newer Older
1
2
3
4
5
"""Train Faster-RCNN end to end."""
import argparse
import os

# disable autotune
6
os.environ["MXNET_CUDNN_AUTOTUNE_DEFAULT"] = "0"
7
8
import logging
import time
9

10
import gluoncv as gcv
11
12
13
import mxnet as mx
import numpy as np
from data import *
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
14
from gluoncv import data as gdata, utils as gutils
15
16
from gluoncv.data.batchify import Append, FasterRCNNTrainBatchify, Tuple
from gluoncv.data.transforms.presets.rcnn import (
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
17
18
19
    FasterRCNNDefaultTrainTransform,
    FasterRCNNDefaultValTransform,
)
20
21
from gluoncv.model_zoo import get_model
from gluoncv.utils.metrics.coco_detection import COCODetectionMetric
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
22
23
24
25
26
27
from gluoncv.utils.metrics.rcnn import (
    RCNNAccMetric,
    RCNNL1LossMetric,
    RPNAccMetric,
    RPNL1LossMetric,
)
28
29
from gluoncv.utils.metrics.voc_detection import VOC07MApMetric
from gluoncv.utils.parallel import Parallel, Parallelizable
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
30
31
32
33
from model import (
    faster_rcnn_resnet101_v1d_custom,
    faster_rcnn_resnet50_v1b_custom,
)
34
35
from mxnet import autograd, gluon
from mxnet.contrib import amp
36
37
38
39
40
41
42
43

try:
    import horovod.mxnet as hvd
except ImportError:
    hvd = None


def parse_args():
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    parser = argparse.ArgumentParser(
        description="Train Faster-RCNN networks e2e."
    )
    parser.add_argument(
        "--network",
        type=str,
        default="resnet101_v1d",
        help="Base network name which serves as feature extraction base.",
    )
    parser.add_argument(
        "--dataset",
        type=str,
        default="visualgenome",
        help="Training dataset. Now support voc and coco.",
    )
    parser.add_argument(
        "--num-workers",
        "-j",
        dest="num_workers",
        type=int,
        default=8,
        help="Number of data workers, you can use larger "
        "number to accelerate data loading, "
        "if your CPU and GPUs are powerful.",
    )
    parser.add_argument(
        "--batch-size", type=int, default=8, help="Training mini-batch size."
    )
    parser.add_argument(
        "--gpus",
        type=str,
        default="0",
        help="Training with GPUs, you can specify 1,3 for example.",
    )
    parser.add_argument(
        "--epochs", type=str, default="", help="Training epochs."
    )
    parser.add_argument(
        "--resume",
        type=str,
        default="",
        help="Resume from previously saved parameters if not None. "
        "For example, you can resume from ./faster_rcnn_xxx_0123.params",
    )
    parser.add_argument(
        "--start-epoch",
        type=int,
        default=0,
        help="Starting epoch for resuming, default is 0 for new training."
        "You can specify it to 100 for example to start from 100 epoch.",
    )
    parser.add_argument(
        "--lr",
        type=str,
        default="",
        help="Learning rate, default is 0.001 for voc single gpu training.",
    )
    parser.add_argument(
        "--lr-decay",
        type=float,
        default=0.1,
        help="decay rate of learning rate. default is 0.1.",
    )
    parser.add_argument(
        "--lr-decay-epoch",
        type=str,
        default="",
        help="epochs at which learning rate decays. default is 14,20 for voc.",
    )
    parser.add_argument(
        "--lr-warmup",
        type=str,
        default="",
        help="warmup iterations to adjust learning rate, default is 0 for voc.",
    )
    parser.add_argument(
        "--lr-warmup-factor",
        type=float,
        default=1.0 / 3.0,
        help="warmup factor of base lr.",
    )
    parser.add_argument(
        "--momentum",
        type=float,
        default=0.9,
        help="SGD momentum, default is 0.9",
    )
    parser.add_argument(
        "--wd",
        type=str,
        default="",
        help="Weight decay, default is 5e-4 for voc",
    )
    parser.add_argument(
        "--log-interval",
        type=int,
        default=100,
        help="Logging mini-batch interval. Default is 100.",
    )
    parser.add_argument(
        "--save-prefix", type=str, default="", help="Saving parameter prefix"
    )
    parser.add_argument(
        "--save-interval",
        type=int,
        default=1,
        help="Saving parameters epoch interval, best model will always be saved.",
    )
    parser.add_argument(
        "--val-interval",
        type=int,
        default=1,
        help="Epoch interval for validation, increase the number will reduce the "
        "training time if validation is slow.",
    )
    parser.add_argument(
        "--seed", type=int, default=233, help="Random seed to be fixed."
    )
    parser.add_argument(
        "--verbose",
        dest="verbose",
        action="store_true",
        help="Print helpful debugging info once set.",
    )
    parser.add_argument(
        "--mixup", action="store_true", help="Use mixup training."
    )
    parser.add_argument(
        "--no-mixup-epochs",
        type=int,
        default=20,
        help="Disable mixup training if enabled in the last N epochs.",
    )
177
178

    # Norm layer options
179
180
181
182
183
184
185
186
187
188
    parser.add_argument(
        "--norm-layer",
        type=str,
        default=None,
        help="Type of normalization layer to use. "
        "If set to None, backbone normalization layer will be fixed,"
        " and no normalization layer will be used. "
        "Currently supports 'bn', and None, default is None."
        "Note that if horovod is enabled, sync bn will not work correctly.",
    )
189
190

    # FPN options
191
192
193
194
195
    parser.add_argument(
        "--use-fpn",
        action="store_true",
        help="Whether to use feature pyramid network.",
    )
196
197

    # Performance options
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    parser.add_argument(
        "--disable-hybridization",
        action="store_true",
        help="Whether to disable hybridize the model. "
        "Memory usage and speed will decrese.",
    )
    parser.add_argument(
        "--static-alloc",
        action="store_true",
        help="Whether to use static memory allocation. Memory usage will increase.",
    )
    parser.add_argument(
        "--amp",
        action="store_true",
        help="Use MXNet AMP for mixed precision training.",
    )
    parser.add_argument(
        "--horovod",
        action="store_true",
        help="Use MXNet Horovod for distributed training. Must be run with OpenMPI. "
        "--gpus is ignored when using --horovod.",
    )
    parser.add_argument(
        "--executor-threads",
        type=int,
        default=1,
        help="Number of threads for executor for scheduling ops. "
        "More threads may incur higher GPU memory footprint, "
        "but may speed up throughput. Note that when horovod is used, "
        "it is set to 1.",
    )
    parser.add_argument(
        "--kv-store",
        type=str,
        default="nccl",
        help="KV store options. local, device, nccl, dist_sync, dist_device_sync, "
        "dist_async are available.",
    )
236
237
238
239
240

    args = parser.parse_args()

    if args.horovod:
        if hvd is None:
241
242
243
            raise SystemExit(
                "Horovod not found, please check if you installed it correctly."
            )
244
245
        hvd.init()

246
    if args.dataset == "voc":
247
        args.epochs = int(args.epochs) if args.epochs else 20
248
249
250
        args.lr_decay_epoch = (
            args.lr_decay_epoch if args.lr_decay_epoch else "14,20"
        )
251
252
253
        args.lr = float(args.lr) if args.lr else 0.001
        args.lr_warmup = args.lr_warmup if args.lr_warmup else -1
        args.wd = float(args.wd) if args.wd else 5e-4
254
    elif args.dataset == "visualgenome":
255
        args.epochs = int(args.epochs) if args.epochs else 20
256
257
258
        args.lr_decay_epoch = (
            args.lr_decay_epoch if args.lr_decay_epoch else "14,20"
        )
259
260
261
        args.lr = float(args.lr) if args.lr else 0.001
        args.lr_warmup = args.lr_warmup if args.lr_warmup else -1
        args.wd = float(args.wd) if args.wd else 5e-4
262
    elif args.dataset == "coco":
263
        args.epochs = int(args.epochs) if args.epochs else 26
264
265
266
        args.lr_decay_epoch = (
            args.lr_decay_epoch if args.lr_decay_epoch else "17,23"
        )
267
268
269
270
271
272
273
        args.lr = float(args.lr) if args.lr else 0.01
        args.lr_warmup = args.lr_warmup if args.lr_warmup else 1000
        args.wd = float(args.wd) if args.wd else 1e-4
    return args


def get_dataset(dataset, args):
274
    if dataset.lower() == "voc":
275
        train_dataset = gdata.VOCDetection(
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
            splits=[(2007, "trainval"), (2012, "trainval")]
        )
        val_dataset = gdata.VOCDetection(splits=[(2007, "test")])
        val_metric = VOC07MApMetric(
            iou_thresh=0.5, class_names=val_dataset.classes
        )
    elif dataset.lower() == "coco":
        train_dataset = gdata.COCODetection(
            splits="instances_train2017", use_crowd=False
        )
        val_dataset = gdata.COCODetection(
            splits="instances_val2017", skip_empty=False
        )
        val_metric = COCODetectionMetric(
            val_dataset, args.save_prefix + "_eval", cleanup=True
        )
    elif dataset.lower() == "visualgenome":
        train_dataset = VGObject(
            root=os.path.join("~", ".mxnet", "datasets", "visualgenome"),
            splits="detections_train",
            use_crowd=False,
        )
        val_dataset = VGObject(
            root=os.path.join("~", ".mxnet", "datasets", "visualgenome"),
            splits="detections_val",
            skip_empty=False,
        )
        val_metric = COCODetectionMetric(
            val_dataset, args.save_prefix + "_eval", cleanup=True
        )
306
    else:
307
308
309
        raise NotImplementedError(
            "Dataset: {} not implemented.".format(dataset)
        )
310
311
    if args.mixup:
        from gluoncv.data.mixup import detection
312

313
314
315
316
        train_dataset = detection.MixupDetection(train_dataset)
    return train_dataset, val_dataset, val_metric


317
318
319
320
321
322
323
324
325
326
def get_dataloader(
    net,
    train_dataset,
    val_dataset,
    train_transform,
    val_transform,
    batch_size,
    num_shards,
    args,
):
327
328
    """Get dataloader."""
    train_bfn = FasterRCNNTrainBatchify(net, num_shards)
329
    if hasattr(train_dataset, "get_im_aspect_ratio"):
330
331
        im_aspect_ratio = train_dataset.get_im_aspect_ratio()
    else:
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
        im_aspect_ratio = [1.0] * len(train_dataset)
    train_sampler = gcv.nn.sampler.SplitSortedBucketSampler(
        im_aspect_ratio,
        batch_size,
        num_parts=hvd.size() if args.horovod else 1,
        part_index=hvd.rank() if args.horovod else 0,
        shuffle=True,
    )
    train_loader = mx.gluon.data.DataLoader(
        train_dataset.transform(
            train_transform(
                net.short,
                net.max_size,
                net,
                ashape=net.ashape,
                multi_stage=args.use_fpn,
            )
        ),
        batch_sampler=train_sampler,
        batchify_fn=train_bfn,
        num_workers=args.num_workers,
    )
354
355
356
357
    if val_dataset is None:
        val_loader = None
    else:
        val_bfn = Tuple(*[Append() for _ in range(3)])
358
359
360
        short = (
            net.short[-1] if isinstance(net.short, (tuple, list)) else net.short
        )
361
362
        # validation use 1 sample per device
        val_loader = mx.gluon.data.DataLoader(
363
364
365
366
367
368
369
            val_dataset.transform(val_transform(short, net.max_size)),
            num_shards,
            False,
            batchify_fn=val_bfn,
            last_batch="keep",
            num_workers=args.num_workers,
        )
370
371
372
    return train_loader, val_loader


373
374
375
def save_params(
    net, logger, best_map, current_map, epoch, save_interval, prefix
):
376
377
    current_map = float(current_map)
    if current_map > best_map[0]:
378
379
380
381
382
        logger.info(
            "[Epoch {}] mAP {} higher than current best {} saving to {}".format(
                epoch, current_map, best_map, "{:s}_best.params".format(prefix)
            )
        )
383
        best_map[0] = current_map
384
385
386
        net.save_parameters("{:s}_best.params".format(prefix))
        with open(prefix + "_best_map.log", "a") as f:
            f.write("{:04d}:\t{:.4f}\n".format(epoch, current_map))
387
    if save_interval and (epoch + 1) % save_interval == 0:
388
389
390
391
392
393
394
395
396
        logger.info(
            "[Epoch {}] Saving parameters to {}".format(
                epoch,
                "{:s}_{:04d}_{:.4f}.params".format(prefix, epoch, current_map),
            )
        )
        net.save_parameters(
            "{:s}_{:04d}_{:.4f}.params".format(prefix, epoch, current_map)
        )
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439


def split_and_load(batch, ctx_list):
    """Split data to 1 batch each device."""
    new_batch = []
    for i, data in enumerate(batch):
        if isinstance(data, (list, tuple)):
            new_data = [x.as_in_context(ctx) for x, ctx in zip(data, ctx_list)]
        else:
            new_data = [data.as_in_context(ctx_list[0])]
        new_batch.append(new_data)
    return new_batch


def validate(net, val_data, ctx, eval_metric, args):
    """Test on validation dataset."""
    clipper = gcv.nn.bbox.BBoxClipToImage()
    eval_metric.reset()
    if not args.disable_hybridization:
        # input format is differnet than training, thus rehybridization is needed.
        net.hybridize(static_alloc=args.static_alloc)
    for i, batch in enumerate(val_data):
        batch = split_and_load(batch, ctx_list=ctx)
        det_bboxes = []
        det_ids = []
        det_scores = []
        gt_bboxes = []
        gt_ids = []
        gt_difficults = []
        for x, y, im_scale in zip(*batch):
            # get prediction results
            ids, scores, bboxes = net(x)
            det_ids.append(ids)
            det_scores.append(scores)
            # clip to image size
            det_bboxes.append(clipper(bboxes, x))
            # rescale to original resolution
            im_scale = im_scale.reshape((-1)).asscalar()
            det_bboxes[-1] *= im_scale
            # split ground truths
            gt_ids.append(y.slice_axis(axis=-1, begin=4, end=5))
            gt_bboxes.append(y.slice_axis(axis=-1, begin=0, end=4))
            gt_bboxes[-1] *= im_scale
440
441
442
443
444
            gt_difficults.append(
                y.slice_axis(axis=-1, begin=5, end=6)
                if y.shape[-1] > 5
                else None
            )
445
446

        # update metric
447
448
449
450
451
452
        for det_bbox, det_id, det_score, gt_bbox, gt_id, gt_diff in zip(
            det_bboxes, det_ids, det_scores, gt_bboxes, gt_ids, gt_difficults
        ):
            eval_metric.update(
                det_bbox, det_id, det_score, gt_bbox, gt_id, gt_diff
            )
453
454
455
    return eval_metric.get()


456
def get_lr_at_iter(alpha, lr_warmup_factor=1.0 / 3.0):
457
458
459
460
    return lr_warmup_factor * (1 - alpha) + alpha


class ForwardBackwardTask(Parallelizable):
461
462
463
464
465
466
467
468
469
470
    def __init__(
        self,
        net,
        optimizer,
        rpn_cls_loss,
        rpn_box_loss,
        rcnn_cls_loss,
        rcnn_box_loss,
        mix_ratio,
    ):
471
472
473
474
475
476
477
478
479
480
481
482
483
484
        super(ForwardBackwardTask, self).__init__()
        self.net = net
        self._optimizer = optimizer
        self.rpn_cls_loss = rpn_cls_loss
        self.rpn_box_loss = rpn_box_loss
        self.rcnn_cls_loss = rcnn_cls_loss
        self.rcnn_box_loss = rcnn_box_loss
        self.mix_ratio = mix_ratio

    def forward_backward(self, x):
        data, label, rpn_cls_targets, rpn_box_targets, rpn_box_masks = x
        with autograd.record():
            gt_label = label[:, :, 4:5]
            gt_box = label[:, :, :4]
485
486
487
488
489
490
491
492
493
494
495
496
497
498
            (
                cls_pred,
                box_pred,
                roi,
                samples,
                matches,
                rpn_score,
                rpn_box,
                anchors,
                cls_targets,
                box_targets,
                box_masks,
                _,
            ) = net(data, gt_box, gt_label)
499
500
501
            # losses of rpn
            rpn_score = rpn_score.squeeze(axis=-1)
            num_rpn_pos = (rpn_cls_targets >= 0).sum()
502
503
504
505
506
507
508
509
510
511
512
513
            rpn_loss1 = (
                self.rpn_cls_loss(
                    rpn_score, rpn_cls_targets, rpn_cls_targets >= 0
                )
                * rpn_cls_targets.size
                / num_rpn_pos
            )
            rpn_loss2 = (
                self.rpn_box_loss(rpn_box, rpn_box_targets, rpn_box_masks)
                * rpn_box.size
                / num_rpn_pos
            )
514
515
516
517
            # rpn overall loss, use sum rather than average
            rpn_loss = rpn_loss1 + rpn_loss2
            # losses of rcnn
            num_rcnn_pos = (cls_targets >= 0).sum()
518
519
520
521
522
523
524
525
526
527
528
529
            rcnn_loss1 = (
                self.rcnn_cls_loss(
                    cls_pred, cls_targets, cls_targets.expand_dims(-1) >= 0
                )
                * cls_targets.size
                / num_rcnn_pos
            )
            rcnn_loss2 = (
                self.rcnn_box_loss(box_pred, box_targets, box_masks)
                * box_pred.size
                / num_rcnn_pos
            )
530
531
            rcnn_loss = rcnn_loss1 + rcnn_loss2
            # overall losses
532
533
534
535
            total_loss = (
                rpn_loss.sum() * self.mix_ratio
                + rcnn_loss.sum() * self.mix_ratio
            )
536
537
538
539
540

            rpn_loss1_metric = rpn_loss1.mean() * self.mix_ratio
            rpn_loss2_metric = rpn_loss2.mean() * self.mix_ratio
            rcnn_loss1_metric = rcnn_loss1.mean() * self.mix_ratio
            rcnn_loss2_metric = rcnn_loss2.mean() * self.mix_ratio
541
542
543
544
            rpn_acc_metric = [
                [rpn_cls_targets, rpn_cls_targets >= 0],
                [rpn_score],
            ]
545
546
547
548
549
            rpn_l1_loss_metric = [[rpn_box_targets, rpn_box_masks], [rpn_box]]
            rcnn_acc_metric = [[cls_targets], [cls_pred]]
            rcnn_l1_loss_metric = [[box_targets, box_masks], [box_pred]]

            if args.amp:
550
551
552
                with amp.scale_loss(
                    total_loss, self._optimizer
                ) as scaled_losses:
553
554
555
556
                    autograd.backward(scaled_losses)
            else:
                total_loss.backward()

557
558
559
560
561
562
563
564
565
566
        return (
            rpn_loss1_metric,
            rpn_loss2_metric,
            rcnn_loss1_metric,
            rcnn_loss2_metric,
            rpn_acc_metric,
            rpn_l1_loss_metric,
            rcnn_acc_metric,
            rcnn_l1_loss_metric,
        )
567
568
569
570


def train(net, train_data, val_data, eval_metric, batch_size, ctx, args):
    """Training pipeline"""
571
572
573
    args.kv_store = (
        "device" if (args.amp and "nccl" in args.kv_store) else args.kv_store
    )
574
    kv = mx.kvstore.create(args.kv_store)
575
576
577
578
579
580
581
    net.collect_params().setattr("grad_req", "null")
    net.collect_train_params().setattr("grad_req", "write")
    optimizer_params = {
        "learning_rate": args.lr,
        "wd": args.wd,
        "momentum": args.momentum,
    }
582
583
584
585
    if args.horovod:
        hvd.broadcast_parameters(net.collect_params(), root_rank=0)
        trainer = hvd.DistributedTrainer(
            net.collect_train_params(),  # fix batchnorm, fix first stage, etc...
586
587
588
            "sgd",
            optimizer_params,
        )
589
590
591
    else:
        trainer = gluon.Trainer(
            net.collect_train_params(),  # fix batchnorm, fix first stage, etc...
592
            "sgd",
593
            optimizer_params,
594
595
596
            update_on_kvstore=(False if args.amp else None),
            kvstore=kv,
        )
597
598
599
600
601
602

    if args.amp:
        amp.init_trainer(trainer)

    # lr decay policy
    lr_decay = float(args.lr_decay)
603
604
605
    lr_steps = sorted(
        [float(ls) for ls in args.lr_decay_epoch.split(",") if ls.strip()]
    )
606
607
608
    lr_warmup = float(args.lr_warmup)  # avoid int division

    # TODO(zhreshold) losses?
609
610
611
612
    rpn_cls_loss = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss(
        from_sigmoid=False
    )
    rpn_box_loss = mx.gluon.loss.HuberLoss(rho=1 / 9.0)  # == smoothl1
613
614
    rcnn_cls_loss = mx.gluon.loss.SoftmaxCrossEntropyLoss()
    rcnn_box_loss = mx.gluon.loss.HuberLoss()  # == smoothl1
615
616
617
618
619
620
    metrics = [
        mx.metric.Loss("RPN_Conf"),
        mx.metric.Loss("RPN_SmoothL1"),
        mx.metric.Loss("RCNN_CrossEntropy"),
        mx.metric.Loss("RCNN_SmoothL1"),
    ]
621
622
623
624
625

    rpn_acc_metric = RPNAccMetric()
    rpn_bbox_metric = RPNL1LossMetric()
    rcnn_acc_metric = RCNNAccMetric()
    rcnn_bbox_metric = RCNNL1LossMetric()
626
627
628
629
630
631
    metrics2 = [
        rpn_acc_metric,
        rpn_bbox_metric,
        rcnn_acc_metric,
        rcnn_bbox_metric,
    ]
632
633
634
635
636

    # set up logger
    logging.basicConfig()
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)
637
    log_file_path = args.save_prefix + "_train.log"
638
639
640
641
642
643
644
    log_dir = os.path.dirname(log_file_path)
    if log_dir and not os.path.exists(log_dir):
        os.makedirs(log_dir)
    fh = logging.FileHandler(log_file_path)
    logger.addHandler(fh)
    logger.info(args)
    if args.verbose:
645
        logger.info("Trainable parameters:")
646
        logger.info(net.collect_train_params().keys())
647
    logger.info("Start training from [Epoch {}]".format(args.start_epoch))
648
649
650
651
652
    best_map = [0]
    for epoch in range(args.start_epoch, args.epochs):
        mix_ratio = 1.0
        if not args.disable_hybridization:
            net.hybridize(static_alloc=args.static_alloc)
653
654
655
656
657
658
659
660
661
662
663
664
665
666
        rcnn_task = ForwardBackwardTask(
            net,
            trainer,
            rpn_cls_loss,
            rpn_box_loss,
            rcnn_cls_loss,
            rcnn_box_loss,
            mix_ratio=1.0,
        )
        executor = (
            Parallel(args.executor_threads, rcnn_task)
            if not args.horovod
            else None
        )
667
668
669
670
671
672
673
674
675
676
677
        if args.mixup:
            # TODO(zhreshold) only support evenly mixup now, target generator needs to be modified otherwise
            train_data._dataset._data.set_mixup(np.random.uniform, 0.5, 0.5)
            mix_ratio = 0.5
            if epoch >= args.epochs - args.no_mixup_epochs:
                train_data._dataset._data.set_mixup(None)
                mix_ratio = 1.0
        while lr_steps and epoch >= lr_steps[0]:
            new_lr = trainer.learning_rate * lr_decay
            lr_steps.pop(0)
            trainer.set_learning_rate(new_lr)
678
679
680
            logger.info(
                "[Epoch {}] Set learning rate to {}".format(epoch, new_lr)
            )
681
682
683
684
685
686
        for metric in metrics:
            metric.reset()
        tic = time.time()
        btic = time.time()
        base_lr = trainer.learning_rate
        rcnn_task.mix_ratio = mix_ratio
687
        logger.info("Total Num of Batches: %d" % (len(train_data)))
688
689
690
        for i, batch in enumerate(train_data):
            if epoch == 0 and i <= lr_warmup:
                # adjust based on real percentage
691
692
693
                new_lr = base_lr * get_lr_at_iter(
                    i / lr_warmup, args.lr_warmup_factor
                )
694
695
696
                if new_lr != trainer.learning_rate:
                    if i % args.log_interval == 0:
                        logger.info(
697
698
699
700
                            "[Epoch 0 Iteration {}] Set learning rate to {}".format(
                                i, new_lr
                            )
                        )
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
                    trainer.set_learning_rate(new_lr)
            batch = split_and_load(batch, ctx_list=ctx)
            metric_losses = [[] for _ in metrics]
            add_losses = [[] for _ in metrics2]
            if executor is not None:
                for data in zip(*batch):
                    executor.put(data)
            for j in range(len(ctx)):
                if executor is not None:
                    result = executor.get()
                else:
                    result = rcnn_task.forward_backward(list(zip(*batch))[0])
                if (not args.horovod) or hvd.rank() == 0:
                    for k in range(len(metric_losses)):
                        metric_losses[k].append(result[k])
                    for k in range(len(add_losses)):
                        add_losses[k].append(result[len(metric_losses) + k])
            for metric, record in zip(metrics, metric_losses):
                metric.update(0, record)
            for metric, records in zip(metrics2, add_losses):
                for pred in records:
                    metric.update(pred[0], pred[1])
            trainer.step(batch_size)

            # update metrics
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
            if (
                (not args.horovod or hvd.rank() == 0)
                and args.log_interval
                and not (i + 1) % args.log_interval
            ):
                msg = ",".join(
                    [
                        "{}={:.3f}".format(*metric.get())
                        for metric in metrics + metrics2
                    ]
                )
                logger.info(
                    "[Epoch {}][Batch {}], Speed: {:.3f} samples/sec, {}".format(
                        epoch,
                        i,
                        args.log_interval
                        * args.batch_size
                        / (time.time() - btic),
                        msg,
                    )
                )
747
748
749
                btic = time.time()

        if (not args.horovod) or hvd.rank() == 0:
750
751
752
753
754
755
756
757
            msg = ",".join(
                ["{}={:.3f}".format(*metric.get()) for metric in metrics]
            )
            logger.info(
                "[Epoch {}] Training cost: {:.3f}, {}".format(
                    epoch, (time.time() - tic), msg
                )
            )
758
759
760
            if not (epoch + 1) % args.val_interval:
                # consider reduce the frequency of validation to save time
                if val_data is not None:
761
762
763
764
765
766
767
768
769
770
771
772
                    map_name, mean_ap = validate(
                        net, val_data, ctx, eval_metric, args
                    )
                    val_msg = "\n".join(
                        [
                            "{}={}".format(k, v)
                            for k, v in zip(map_name, mean_ap)
                        ]
                    )
                    logger.info(
                        "[Epoch {}] Validation: \n{}".format(epoch, val_msg)
                    )
773
774
775
776
                    current_map = float(mean_ap[-1])
                else:
                    current_map = 0
            else:
777
778
779
780
781
782
783
784
785
786
787
788
789
                current_map = 0.0
            save_params(
                net,
                logger,
                best_map,
                current_map,
                epoch,
                args.save_interval,
                args.save_prefix,
            )


if __name__ == "__main__":
790
791
792
793
794
795
796
797
798
799
800
801
802
803
    import sys

    sys.setrecursionlimit(1100)
    args = parse_args()
    # fix seed for mxnet, numpy and python builtin random generator.
    gutils.random.seed(args.seed)

    if args.amp:
        amp.init()

    # training contexts
    if args.horovod:
        ctx = [mx.gpu(hvd.local_rank())]
    else:
804
        ctx = [mx.gpu(int(i)) for i in args.gpus.split(",") if i.strip()]
805
806
807
808
809
810
        ctx = ctx if ctx else [mx.cpu()]

    # network
    kwargs = {}
    module_list = []
    if args.use_fpn:
811
        module_list.append("fpn")
812
813
    if args.norm_layer is not None:
        module_list.append(args.norm_layer)
814
815
        if args.norm_layer == "bn":
            kwargs["num_devices"] = len(args.gpus.split(","))
816

817
    net_name = "_".join(("faster_rcnn", *module_list, args.network, "custom"))
818
819
820
    args.save_prefix += net_name
    gutils.makedirs(args.save_prefix)
    train_dataset, val_dataset, eval_metric = get_dataset(args.dataset, args)
821
822
823
824
825
826
827
828
    net = faster_rcnn_resnet101_v1d_custom(
        classes=train_dataset.classes,
        transfer="coco",
        pretrained_base=False,
        additional_output=False,
        per_device_batch_size=args.batch_size // len(ctx),
        **kwargs
    )
829
830
831
832
833
834
835
836
837
838
    if args.resume.strip():
        net.load_parameters(args.resume.strip())
    else:
        for param in net.collect_params().values():
            if param._data is not None:
                continue
            param.initialize()
    net.collect_params().reset_ctx(ctx)

    # training data
839
840
841
    batch_size = (
        args.batch_size // len(ctx) if args.horovod else args.batch_size
    )
842
    train_data, val_data = get_dataloader(
843
844
845
846
847
848
849
850
851
        net,
        train_dataset,
        val_dataset,
        FasterRCNNDefaultTrainTransform,
        FasterRCNNDefaultValTransform,
        batch_size,
        len(ctx),
        args,
    )
852
853
854

    # training
    train(net, train_data, val_data, eval_metric, batch_size, ctx, args)