"vscode:/vscode.git/clone" did not exist on "38625e2139941fe8a02db81ebdd2babda359f05b"
faster_rcnn.py 39.5 KB
Newer Older
1
2
3
4
5
6
7
8
"""Faster RCNN Model."""
from __future__ import absolute_import

import os
import warnings

import mxnet as mx

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
9
10
11
12
from gluoncv.model_zoo.faster_rcnn.rcnn_target import (
    RCNNTargetGenerator,
    RCNNTargetSampler,
)
13
14
15
from gluoncv.model_zoo.rcnn import RCNN
from gluoncv.model_zoo.rpn import RPN
from gluoncv.nn.feature import FPNFeatureExpander
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
16
17
18
from mxnet import autograd
from mxnet.gluon import nn
from mxnet.gluon.contrib.nn import SyncBatchNorm
19

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
20
21
22
23
24
25
26
27
__all__ = [
    "FasterRCNN",
    "get_faster_rcnn",
    "faster_rcnn_resnet50_v1b_coco",
    "faster_rcnn_resnet50_v1b_custom",
    "faster_rcnn_resnet101_v1d_coco",
    "faster_rcnn_resnet101_v1d_custom",
]
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169


class FasterRCNN(RCNN):
    r"""Faster RCNN network.

    Parameters
    ----------
    features : gluon.HybridBlock
        Base feature extractor before feature pooling layer.
    top_features : gluon.HybridBlock
        Tail feature extractor after feature pooling layer.
    classes : iterable of str
        Names of categories, its length is ``num_class``.
    box_features : gluon.HybridBlock, default is None
        feature head for transforming shared ROI output (top_features) for box prediction.
        If set to None, global average pooling will be used.
    short : int, default is 600.
        Input image short side size.
    max_size : int, default is 1000.
        Maximum size of input image long side.
    min_stage : int, default is 4
        Minimum stage NO. for FPN stages.
    max_stage : int, default is 4
        Maximum stage NO. for FPN stages.
    train_patterns : str, default is None.
        Matching pattern for trainable parameters.
    nms_thresh : float, default is 0.3.
        Non-maximum suppression threshold. You can specify < 0 or > 1 to disable NMS.
    nms_topk : int, default is 400
        Apply NMS to top k detection results, use -1 to disable so that every Detection
         result is used in NMS.
    post_nms : int, default is 100
        Only return top `post_nms` detection results, the rest is discarded. The number is
        based on COCO dataset which has maximum 100 objects per image. You can adjust this
        number if expecting more objects. You can use -1 to return all detections.
    roi_mode : str, default is align
        ROI pooling mode. Currently support 'pool' and 'align'.
    roi_size : tuple of int, length 2, default is (14, 14)
        (height, width) of the ROI region.
    strides : int/tuple of ints, default is 16
        Feature map stride with respect to original image.
        This is usually the ratio between original image size and feature map size.
        For FPN, use a tuple of ints.
    clip : float, default is None
        Clip bounding box target to this value.
    rpn_channel : int, default is 1024
        Channel number used in RPN convolutional layers.
    base_size : int
        The width(and height) of reference anchor box.
    scales : iterable of float, default is (8, 16, 32)
        The areas of anchor boxes.
        We use the following form to compute the shapes of anchors:

        .. math::

            width_{anchor} = size_{base} \times scale \times \sqrt{ 1 / ratio}
            height_{anchor} = size_{base} \times scale \times \sqrt{ratio}

    ratios : iterable of float, default is (0.5, 1, 2)
        The aspect ratios of anchor boxes. We expect it to be a list or tuple.
    alloc_size : tuple of int
        Allocate size for the anchor boxes as (H, W).
        Usually we generate enough anchors for large feature map, e.g. 128x128.
        Later in inference we can have variable input sizes,
        at which time we can crop corresponding anchors from this large
        anchor map so we can skip re-generating anchors for each input.
    rpn_train_pre_nms : int, default is 12000
        Filter top proposals before NMS in training of RPN.
    rpn_train_post_nms : int, default is 2000
        Return top proposal results after NMS in training of RPN.
        Will be set to rpn_train_pre_nms if it is larger than rpn_train_pre_nms.
    rpn_test_pre_nms : int, default is 6000
        Filter top proposals before NMS in testing of RPN.
    rpn_test_post_nms : int, default is 300
        Return top proposal results after NMS in testing of RPN.
        Will be set to rpn_test_pre_nms if it is larger than rpn_test_pre_nms.
    rpn_nms_thresh : float, default is 0.7
        IOU threshold for NMS. It is used to remove overlapping proposals.
    rpn_num_sample : int, default is 256
        Number of samples for RPN targets.
    rpn_pos_iou_thresh : float, default is 0.7
        Anchor with IOU larger than ``pos_iou_thresh`` is regarded as positive samples.
    rpn_neg_iou_thresh : float, default is 0.3
        Anchor with IOU smaller than ``neg_iou_thresh`` is regarded as negative samples.
        Anchors with IOU in between ``pos_iou_thresh`` and ``neg_iou_thresh`` are
        ignored.
    rpn_pos_ratio : float, default is 0.5
        ``pos_ratio`` defines how many positive samples (``pos_ratio * num_sample``) is
        to be sampled.
    rpn_box_norm : array-like of size 4, default is (1., 1., 1., 1.)
        Std value to be divided from encoded values.
    rpn_min_size : int, default is 16
        Proposals whose size is smaller than ``min_size`` will be discarded.
    per_device_batch_size : int, default is 1
        Batch size for each device during training.
    num_sample : int, default is 128
        Number of samples for RCNN targets.
    pos_iou_thresh : float, default is 0.5
        Proposal whose IOU larger than ``pos_iou_thresh`` is regarded as positive samples.
    pos_ratio : float, default is 0.25
        ``pos_ratio`` defines how many positive samples (``pos_ratio * num_sample``) is
        to be sampled.
    max_num_gt : int, default is 300
        Maximum ground-truth number in whole training dataset. This is only an upper bound, not
        necessarily very precise. However, using a very big number may impact the training speed.
    additional_output : boolean, default is False
        ``additional_output`` is only used for Mask R-CNN to get internal outputs.
    force_nms : bool, default is False
        Appy NMS to all categories, this is to avoid overlapping detection results from different
        categories.

    Attributes
    ----------
    classes : iterable of str
        Names of categories, its length is ``num_class``.
    num_class : int
        Number of positive categories.
    short : int
        Input image short side size.
    max_size : int
        Maximum size of input image long side.
    train_patterns : str
        Matching pattern for trainable parameters.
    nms_thresh : float
        Non-maximum suppression threshold. You can specify < 0 or > 1 to disable NMS.
    nms_topk : int
        Apply NMS to top k detection results, use -1 to disable so that every Detection
         result is used in NMS.
    force_nms : bool
        Appy NMS to all categories, this is to avoid overlapping detection results
        from different categories.
    post_nms : int
        Only return top `post_nms` detection results, the rest is discarded. The number is
        based on COCO dataset which has maximum 100 objects per image. You can adjust this
        number if expecting more objects. You can use -1 to return all detections.
    rpn_target_generator : gluon.Block
        Generate training targets with cls_target, box_target, and box_mask.
    target_generator : gluon.Block
        Generate training targets with boxes, samples, matches, gt_label and gt_box.

    """

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    def __init__(
        self,
        features,
        top_features,
        classes,
        box_features=None,
        short=600,
        max_size=1000,
        min_stage=4,
        max_stage=4,
        train_patterns=None,
        nms_thresh=0.3,
        nms_topk=400,
        post_nms=100,
        roi_mode="align",
        roi_size=(14, 14),
        strides=16,
        clip=None,
        rpn_channel=1024,
        base_size=16,
        scales=(8, 16, 32),
        ratios=(0.5, 1, 2),
        alloc_size=(128, 128),
        rpn_nms_thresh=0.7,
        rpn_train_pre_nms=12000,
        rpn_train_post_nms=2000,
        rpn_test_pre_nms=6000,
        rpn_test_post_nms=300,
        rpn_min_size=16,
        per_device_batch_size=1,
        num_sample=128,
        pos_iou_thresh=0.5,
        pos_ratio=0.25,
        max_num_gt=300,
        additional_output=False,
        force_nms=False,
        **kwargs
    ):
208
        super(FasterRCNN, self).__init__(
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
            features=features,
            top_features=top_features,
            classes=classes,
            box_features=box_features,
            short=short,
            max_size=max_size,
            train_patterns=train_patterns,
            nms_thresh=nms_thresh,
            nms_topk=nms_topk,
            post_nms=post_nms,
            roi_mode=roi_mode,
            roi_size=roi_size,
            strides=strides,
            clip=clip,
            force_nms=force_nms,
            **kwargs
        )
226
227
228
229
230
231
232
233
234
235
        if rpn_train_post_nms > rpn_train_pre_nms:
            rpn_train_post_nms = rpn_train_pre_nms
        if rpn_test_post_nms > rpn_test_pre_nms:
            rpn_test_post_nms = rpn_test_pre_nms

        self.ashape = alloc_size[0]
        self._min_stage = min_stage
        self._max_stage = max_stage
        self.num_stages = max_stage - min_stage + 1
        if self.num_stages > 1:
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
236
237
            assert len(scales) == len(strides) == self.num_stages, (
                "The num_stages (%d) must match number of scales (%d) and strides (%d)"
238
                % (self.num_stages, len(scales), len(strides))
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
239
            )
240
241
242
        self._batch_size = per_device_batch_size
        self._num_sample = num_sample
        self._rpn_test_post_nms = rpn_test_post_nms
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
243
244
245
        self._target_generator = RCNNTargetGenerator(
            self.num_class, int(num_sample * pos_ratio), self._batch_size
        )
246
247
248
        self._additional_output = additional_output
        with self.name_scope():
            self.rpn = RPN(
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
                channels=rpn_channel,
                strides=strides,
                base_size=base_size,
                scales=scales,
                ratios=ratios,
                alloc_size=alloc_size,
                clip=clip,
                nms_thresh=rpn_nms_thresh,
                train_pre_nms=rpn_train_pre_nms,
                train_post_nms=rpn_train_post_nms,
                test_pre_nms=rpn_test_pre_nms,
                test_post_nms=rpn_test_post_nms,
                min_size=rpn_min_size,
                multi_level=self.num_stages > 1,
                per_level_nms=False,
            )
            self.sampler = RCNNTargetSampler(
                num_image=self._batch_size,
                num_proposal=rpn_train_post_nms,
                num_sample=num_sample,
                pos_iou_thresh=pos_iou_thresh,
                pos_ratio=pos_ratio,
                max_num_gt=max_num_gt,
            )
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

    @property
    def target_generator(self):
        """Returns stored target generator

        Returns
        -------
        mxnet.gluon.HybridBlock
            The RCNN target generator

        """
        return self._target_generator

    def reset_class(self, classes, reuse_weights=None):
        """Reset class categories and class predictors.

        Parameters
        ----------
        classes : iterable of str
            The new categories. ['apple', 'orange'] for example.
        reuse_weights : dict
            A {new_integer : old_integer} or mapping dict or {new_name : old_name} mapping dict,
            or a list of [name0, name1,...] if class names don't change.
            This allows the new predictor to reuse the
            previously trained weights specified.

        Example
        -------
        >>> net = gluoncv.model_zoo.get_model('faster_rcnn_resnet50_v1b_coco', pretrained=True)
        >>> # use direct name to name mapping to reuse weights
        >>> net.reset_class(classes=['person'], reuse_weights={'person':'person'})
        >>> # or use interger mapping, person is the 14th category in VOC
        >>> net.reset_class(classes=['person'], reuse_weights={0:14})
        >>> # you can even mix them
        >>> net.reset_class(classes=['person'], reuse_weights={'person':14})
        >>> # or use a list of string if class name don't change
        >>> net.reset_class(classes=['person'], reuse_weights=['person'])

        """
        super(FasterRCNN, self).reset_class(classes, reuse_weights)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
313
314
315
        self._target_generator = RCNNTargetGenerator(
            self.num_class, self.sampler._max_pos, self._batch_size
        )
316

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
317
318
319
320
321
322
323
324
325
326
327
    def _pyramid_roi_feats(
        self,
        F,
        features,
        rpn_rois,
        roi_size,
        strides,
        roi_mode="align",
        roi_canonical_scale=224.0,
        eps=1e-6,
    ):
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
        """Assign rpn_rois to specific FPN layers according to its area
           and then perform `ROIPooling` or `ROIAlign` to generate final
           region proposals aggregated features.
        Parameters
        ----------
        features : list of mx.ndarray or mx.symbol
            Features extracted from FPN base network
        rpn_rois : mx.ndarray or mx.symbol
            (N, 5) with [[batch_index, x1, y1, x2, y2], ...] like
        roi_size : tuple
            The size of each roi with regard to ROI-Wise operation
            each region proposal will be roi_size spatial shape.
        strides : tuple e.g. [4, 8, 16, 32]
            Define the gap that ori image and feature map have
        roi_mode : str, default is align
            ROI pooling mode. Currently support 'pool' and 'align'.
        roi_canonical_scale : float, default is 224.0
            Hyperparameters for the RoI-to-FPN level mapping heuristic.
        Returns
        -------
        Pooled roi features aggregated according to its roi_level
        """
        max_stage = self._max_stage
        if self._max_stage > 5:  # do not use p6 for RCNN
            max_stage = self._max_stage - 1
        _, x1, y1, x2, y2 = F.split(rpn_rois, axis=-1, num_outputs=5)
        h = y2 - y1 + 1
        w = x2 - x1 + 1
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
356
357
358
        roi_level = F.floor(
            4 + F.log2(F.sqrt(w * h) / roi_canonical_scale + eps)
        )
359
360
361
362
363
364
365
        roi_level = F.squeeze(F.clip(roi_level, self._min_stage, max_stage))
        # [2,2,..,3,3,...,4,4,...,5,5,...] ``Prohibit swap order here``
        # roi_level_sorted_args = F.argsort(roi_level, is_ascend=True)
        # roi_level = F.sort(roi_level, is_ascend=True)
        # rpn_rois = F.take(rpn_rois, roi_level_sorted_args, axis=0)
        pooled_roi_feats = []
        for i, l in enumerate(range(self._min_stage, max_stage + 1)):
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
366
            if roi_mode == "pool":
367
368
                # Pool features with all rois first, and then set invalid pooled features to zero,
                # at last ele-wise add together to aggregate all features.
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
369
370
371
372
373
374
375
376
377
378
379
                pooled_feature = F.ROIPooling(
                    features[i], rpn_rois, roi_size, 1.0 / strides[i]
                )
                pooled_feature = F.where(
                    roi_level == l, pooled_feature, F.zeros_like(pooled_feature)
                )
            elif roi_mode == "align":
                if (
                    "box_encode" in F.contrib.__dict__
                    and "box_decode" in F.contrib.__dict__
                ):
380
                    # TODO(jerryzcn): clean this up for once mx 1.6 is released.
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
381
382
383
384
385
386
387
388
389
390
                    masked_rpn_rois = F.where(
                        roi_level == l, rpn_rois, F.ones_like(rpn_rois) * -1.0
                    )
                    pooled_feature = F.contrib.ROIAlign(
                        features[i],
                        masked_rpn_rois,
                        roi_size,
                        1.0 / strides[i],
                        sample_ratio=2,
                    )
391
                else:
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
392
393
394
395
396
397
398
399
400
401
402
403
                    pooled_feature = F.contrib.ROIAlign(
                        features[i],
                        rpn_rois,
                        roi_size,
                        1.0 / strides[i],
                        sample_ratio=2,
                    )
                    pooled_feature = F.where(
                        roi_level == l,
                        pooled_feature,
                        F.zeros_like(pooled_feature),
                    )
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
            else:
                raise ValueError("Invalid roi mode: {}".format(roi_mode))
            pooled_roi_feats.append(pooled_feature)
        # Ele-wise add to aggregate all pooled features
        pooled_roi_feats = F.ElementWiseSum(*pooled_roi_feats)
        # Sort all pooled features by asceding order
        # [2,2,..,3,3,...,4,4,...,5,5,...]
        # pooled_roi_feats = F.take(pooled_roi_feats, roi_level_sorted_args)
        # pooled roi feats (B*N, C, 7, 7), N = N2 + N3 + N4 + N5 = num_roi, C=256 in ori paper
        return pooled_roi_feats

    # pylint: disable=arguments-differ
    def hybrid_forward(self, F, x, gt_box=None, gt_label=None, m_rpn_box=None):
        """Forward Faster-RCNN network.

        The behavior during training and inference is different.

        Parameters
        ----------
        x : mxnet.nd.NDArray or mxnet.symbol
            The network input tensor.
        gt_box : type, only required during training
            The ground-truth bbox tensor with shape (B, N, 4).
        gt_label : type, only required during training
            The ground-truth label tensor with shape (B, 1, 4).

        Returns
        -------
        (ids, scores, bboxes)
            During inference, returns final class id, confidence scores, bounding
            boxes.

        """

        def _split(x, axis, num_outputs, squeeze_axis):
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
439
440
441
            x = F.split(
                x, axis=axis, num_outputs=num_outputs, squeeze_axis=squeeze_axis
            )
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
            if isinstance(x, list):
                return x
            else:
                return [x]

        if m_rpn_box is not None:
            manual_rpn_box = True
        else:
            manual_rpn_box = False
        feat = self.features(x)
        if not isinstance(feat, (list, tuple)):
            feat = [feat]

        # RPN proposals
        if autograd.is_training():
            if manual_rpn_box:
                rpn_box = m_rpn_box
                self.nms_thresh = 1
            else:
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
461
462
463
464
465
466
467
468
469
470
                (
                    rpn_score,
                    rpn_box,
                    raw_rpn_score,
                    raw_rpn_box,
                    anchors,
                ) = self.rpn(F.zeros_like(x), *feat)
                rpn_box, samples, matches = self.sampler(
                    rpn_box, rpn_score, gt_box
                )
471
472
473
474
475
476
477
478
479
        else:
            if manual_rpn_box:
                rpn_box = m_rpn_box
                self.nms_thresh = 1
            else:
                _, rpn_box = self.rpn(F.zeros_like(x), *feat)

        # create batchid for roi
        if not manual_rpn_box:
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
480
481
482
483
484
            num_roi = (
                self._num_sample
                if autograd.is_training()
                else self._rpn_test_post_nms
            )
485
486
487
488
489
490
491
492
493
            batch_size = self._batch_size if autograd.is_training() else 1
        else:
            num_roi = m_rpn_box.shape[1]
            batch_size = rpn_box.shape[0]

        with autograd.pause():
            roi_batchid = F.arange(0, batch_size)
            roi_batchid = F.repeat(roi_batchid, num_roi)
            # remove batch dim because ROIPooling require 2d input
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
494
495
496
497
            rpn_roi = F.concat(
                *[roi_batchid.reshape((-1, 1)), rpn_box.reshape((-1, 4))],
                dim=-1
            )
498
499
500
501
            rpn_roi = F.stop_gradient(rpn_roi)

        if self.num_stages > 1:
            # using FPN
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
502
503
504
505
506
507
508
509
            pooled_feat = self._pyramid_roi_feats(
                F,
                feat,
                rpn_roi,
                self._roi_size,
                self._strides,
                roi_mode=self._roi_mode,
            )
510
511
        else:
            # ROI features
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
512
513
514
515
516
517
518
519
520
521
522
523
            if self._roi_mode == "pool":
                pooled_feat = F.ROIPooling(
                    feat[0], rpn_roi, self._roi_size, 1.0 / self._strides
                )
            elif self._roi_mode == "align":
                pooled_feat = F.contrib.ROIAlign(
                    feat[0],
                    rpn_roi,
                    self._roi_size,
                    1.0 / self._strides,
                    sample_ratio=2,
                )
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
            else:
                raise ValueError("Invalid roi mode: {}".format(self._roi_mode))

        # RCNN prediction
        if self.top_features is not None:
            top_feat = self.top_features(pooled_feat)
        else:
            top_feat = pooled_feat
        if self.box_features is None:
            box_feat = F.contrib.AdaptiveAvgPooling2D(top_feat, output_size=1)
        else:
            box_feat = self.box_features(top_feat)
        cls_pred = self.class_predictor(box_feat)
        # cls_pred (B * N, C) -> (B, N, C)
        cls_pred = cls_pred.reshape((batch_size, num_roi, self.num_class + 1))
        if manual_rpn_box:
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
540
541
542
            spatial_feat = top_feat.mean(axis=1).reshape(
                (-4, rpn_box.shape[0], rpn_box.shape[1], -3)
            )
543
544
545
            cls_ids, scores = self.cls_decoder(F.softmax(cls_pred, axis=-1))
            cls_ids = cls_ids.transpose((0, 2, 1)).reshape((0, 0, 0, 1))
            scores = scores.transpose((0, 2, 1)).reshape((0, 0, 0, 1))
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
546
547
548
549
550
551
            cls_ids = _split(
                cls_ids, axis=0, num_outputs=batch_size, squeeze_axis=True
            )
            scores = _split(
                scores, axis=0, num_outputs=batch_size, squeeze_axis=True
            )
552
553
554
555
            return cls_ids, scores, rpn_box, spatial_feat

        # no need to convert bounding boxes in training, just return
        if autograd.is_training():
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
556
557
558
559
560
561
562
563
            (
                cls_targets,
                box_targets,
                box_masks,
                indices,
            ) = self._target_generator(
                rpn_box, samples, matches, gt_label, gt_box
            )
564
            box_feat = F.reshape(box_feat.expand_dims(0), (batch_size, -1, 0))
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
            box_pred = self.box_predictor(
                F.concat(
                    *[
                        F.take(
                            F.slice_axis(
                                box_feat, axis=0, begin=i, end=i + 1
                            ).squeeze(),
                            F.slice_axis(
                                indices, axis=0, begin=i, end=i + 1
                            ).squeeze(),
                        )
                        for i in range(batch_size)
                    ],
                    dim=0
                )
            )
581
582
583
            # box_pred (B * N, C * 4) -> (B, N, C, 4)
            box_pred = box_pred.reshape((batch_size, -1, self.num_class, 4))
            if self._additional_output:
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
                return (
                    cls_pred,
                    box_pred,
                    rpn_box,
                    samples,
                    matches,
                    raw_rpn_score,
                    raw_rpn_box,
                    anchors,
                    cls_targets,
                    box_targets,
                    box_masks,
                    top_feat,
                    indices,
                )
            return (
                cls_pred,
                box_pred,
                rpn_box,
                samples,
                matches,
                raw_rpn_score,
                raw_rpn_box,
                anchors,
                cls_targets,
                box_targets,
                box_masks,
                indices,
            )
613
614
615
616
617
618
619
620
621
622
623
624
625

        box_pred = self.box_predictor(box_feat)
        # box_pred (B * N, C * 4) -> (B, N, C, 4)
        box_pred = box_pred.reshape((batch_size, num_roi, self.num_class, 4))
        # cls_ids (B, N, C), scores (B, N, C)
        cls_ids, scores = self.cls_decoder(F.softmax(cls_pred, axis=-1))
        # cls_ids, scores (B, N, C) -> (B, C, N) -> (B, C, N, 1)
        cls_ids = cls_ids.transpose((0, 2, 1)).reshape((0, 0, 0, 1))
        scores = scores.transpose((0, 2, 1)).reshape((0, 0, 0, 1))
        # box_pred (B, N, C, 4) -> (B, C, N, 4)
        box_pred = box_pred.transpose((0, 2, 1, 3))

        # rpn_boxes (B, N, 4) -> B * (1, N, 4)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
626
627
628
        rpn_boxes = _split(
            rpn_box, axis=0, num_outputs=batch_size, squeeze_axis=False
        )
629
        # cls_ids, scores (B, C, N, 1) -> B * (C, N, 1)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
630
631
632
633
634
635
        cls_ids = _split(
            cls_ids, axis=0, num_outputs=batch_size, squeeze_axis=True
        )
        scores = _split(
            scores, axis=0, num_outputs=batch_size, squeeze_axis=True
        )
636
        # box_preds (B, C, N, 4) -> B * (C, N, 4)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
637
638
639
        box_preds = _split(
            box_pred, axis=0, num_outputs=batch_size, squeeze_axis=True
        )
640
641
642
643
644
645
646
647
648

        # per batch predict, nms, each class has topk outputs
        results = []
        # add feat index
        if self._additional_output:
            sizes = scores[0].shape[0:2]
            # ind = mx.nd.array(list(range(sizes[1])))
            ind = mx.nd.linspace(0, 999, 1000)
            ind = mx.nd.repeat(ind, repeats=sizes[0])
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
649
650
651
652
653
654
655
656
            ind = (
                ind.reshape(sizes[1], sizes[0])
                .transpose((1, 0))
                .expand_dims(axis=2)
            )
        for rpn_box, cls_id, score, box_pred in zip(
            rpn_boxes, cls_ids, scores, box_preds
        ):
657
658
659
660
661
662
663
664
665
666
667
668
669
            # box_pred (C, N, 4) rpn_box (1, N, 4) -> bbox (C, N, 4)
            bbox = self.box_decoder(box_pred, rpn_box)
            if self._additional_output:
                # res (C, N, 7)
                res = F.concat(*[cls_id, score, bbox, ind], dim=-1)
            else:
                # res (C, N, 6)
                res = F.concat(*[cls_id, score, bbox], dim=-1)
            if self.force_nms:
                # res (1, C*N, 6), to allow cross-catogory suppression
                res = res.reshape((1, -1, 0))
            # res (C, self.nms_topk, 6)
            res = F.contrib.box_nms(
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
670
671
672
673
674
675
676
677
678
                res,
                overlap_thresh=self.nms_thresh,
                topk=self.nms_topk,
                valid_thresh=0.001,
                id_index=0,
                score_index=1,
                coord_start=2,
                force_suppress=self.force_nms,
            )
679
680
681
682
683
684
685
686
687
688
689
            # res (C * self.nms_topk, 6)
            res = res.reshape((-3, 0))
            results.append(res)

        # result B * (C * topk, 6) -> (B, C * topk, 6)
        result = F.stack(*results, axis=0)
        ids = F.slice_axis(result, axis=-1, begin=0, end=1)
        scores = F.slice_axis(result, axis=-1, begin=1, end=2)
        bboxes = F.slice_axis(result, axis=-1, begin=2, end=6)
        if self._additional_output:
            feat_ind = F.slice_axis(result, axis=-1, begin=6, end=7)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
690
691
692
            spatial_feat = (
                top_feat.mean(axis=1).expand_dims(0).reshape(batch_size, 0, -1)
            )
693
694
695
            return ids, scores, bboxes, feat, feat_ind, spatial_feat
        return ids, scores, bboxes

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
696
697
698
699
700
701
702
703
704

def get_faster_rcnn(
    name,
    dataset,
    pretrained=False,
    ctx=mx.cpu(),
    root=os.path.join("~", ".mxnet", "models"),
    **kwargs
):
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
    r"""Utility function to return faster rcnn networks.

    Parameters
    ----------
    name : str
        Model name.
    dataset : str
        The name of dataset.
    pretrained : bool or str
        Boolean value controls whether to load the default pretrained weights for model.
        String value represents the hashtag for a certain version of pretrained weights.
    ctx : mxnet.Context
        Context such as mx.cpu(), mx.gpu(0).
    root : str
        Model weights storing path.

    Returns
    -------
    mxnet.gluon.HybridBlock
        The Faster-RCNN network.

    """
    net = FasterRCNN(**kwargs)
    if pretrained:
        from gluoncv.model_zoo.model_store import get_model_file
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
730
731
732
733
734
735
736
737

        full_name = "_".join(("faster_rcnn", name, dataset))
        net.load_parameters(
            get_model_file(full_name, tag=pretrained, root=root),
            ctx=ctx,
            ignore_extra=True,
            allow_missing=True,
        )
738
739
740
741
742
743
744
745
    else:
        for v in net.collect_params().values():
            try:
                v.reset_ctx(ctx)
            except ValueError:
                pass
    return net

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
746
747
748
749

def faster_rcnn_resnet50_v1b_coco(
    pretrained=False, pretrained_base=True, **kwargs
):
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
    r"""Faster RCNN model from the paper
    "Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards
    real-time object detection with region proposal networks"

    Parameters
    ----------
    pretrained : bool or str
        Boolean value controls whether to load the default pretrained weights for model.
        String value represents the hashtag for a certain version of pretrained weights.
    pretrained_base : bool or str, optional, default is True
        Load pretrained base network, the extra layers are randomized. Note that
        if pretrained is `True`, this has no effect.
    ctx : Context, default CPU
        The context in which to load the pretrained weights.
    root : str, default '~/.mxnet/models'
        Location for keeping the model parameters.

    Examples
    --------
    >>> model = get_faster_rcnn_resnet50_v1b_coco(pretrained=True)
    >>> print(model)
    """
    from gluoncv.data import COCODetection
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
773
774
    from gluoncv.model_zoo.resnetv1b import resnet50_v1b

775
776
    classes = COCODetection.CLASSES
    pretrained_base = False if pretrained else pretrained_base
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
777
778
779
780
781
782
    base_network = resnet50_v1b(
        pretrained=pretrained_base,
        dilated=False,
        use_global_stats=True,
        **kwargs
    )
783
784
    features = nn.HybridSequential()
    top_features = nn.HybridSequential()
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
785
786
787
788
789
790
791
792
793
    for layer in [
        "conv1",
        "bn1",
        "relu",
        "maxpool",
        "layer1",
        "layer2",
        "layer3",
    ]:
794
        features.add(getattr(base_network, layer))
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
795
    for layer in ["layer4"]:
796
        top_features.add(getattr(base_network, layer))
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
797
798
799
    train_patterns = "|".join(
        [".*dense", ".*rpn", ".*down(2|3|4)_conv", ".*layers(2|3|4)_conv"]
    )
800
    return get_faster_rcnn(
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
        name="resnet50_v1b",
        dataset="coco",
        pretrained=pretrained,
        features=features,
        top_features=top_features,
        classes=classes,
        short=800,
        max_size=1333,
        train_patterns=train_patterns,
        nms_thresh=0.7,
        nms_topk=-1,
        post_nms=-1,
        roi_mode="align",
        roi_size=(14, 14),
        strides=16,
        clip=4.14,
        rpn_channel=1024,
        base_size=16,
        scales=(2, 4, 8, 16, 32),
        ratios=(0.5, 1, 2),
        alloc_size=(128, 128),
        rpn_nms_thresh=0.7,
        rpn_train_pre_nms=12000,
        rpn_train_post_nms=2000,
        rpn_test_pre_nms=6000,
        rpn_test_post_nms=1000,
        rpn_min_size=1,
        num_sample=128,
        pos_iou_thresh=0.5,
        pos_ratio=0.25,
        max_num_gt=3000,
        **kwargs
    )


def faster_rcnn_resnet50_v1b_custom(
    classes, transfer=None, pretrained_base=True, pretrained=False, **kwargs
):
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
    r"""Faster RCNN model with resnet50_v1b base network on custom dataset.

    Parameters
    ----------
    classes : iterable of str
        Names of custom foreground classes. `len(classes)` is the number of foreground classes.
    transfer : str or None
        If not `None`, will try to reuse pre-trained weights from faster RCNN networks trained
        on other datasets.
    pretrained : bool or str
        Boolean value controls whether to load the default pretrained weights for model.
        String value represents the hashtag for a certain version of pretrained weights.
    pretrained_base : bool or str
        Boolean value controls whether to load the default pretrained weights for model.
        String value represents the hashtag for a certain version of pretrained weights.
    ctx : Context, default CPU
        The context in which to load the pretrained weights.
    root : str, default '~/.mxnet/models'
        Location for keeping the model parameters.

    Returns
    -------
    mxnet.gluon.HybridBlock
        Hybrid faster RCNN network.
    """
    if pretrained:
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
865
866
867
        warnings.warn(
            "Custom models don't provide `pretrained` weights, ignored."
        )
868
869
    if transfer is None:
        from gluoncv.model_zoo.resnetv1b import resnet50_v1b
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
870
871
872
873
874
875
876

        base_network = resnet50_v1b(
            pretrained=pretrained_base,
            dilated=False,
            use_global_stats=True,
            **kwargs
        )
877
878
        features = nn.HybridSequential()
        top_features = nn.HybridSequential()
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
879
880
881
882
883
884
885
886
887
        for layer in [
            "conv1",
            "bn1",
            "relu",
            "maxpool",
            "layer1",
            "layer2",
            "layer3",
        ]:
888
            features.add(getattr(base_network, layer))
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
889
        for layer in ["layer4"]:
890
            top_features.add(getattr(base_network, layer))
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
891
892
893
        train_patterns = "|".join(
            [".*dense", ".*rpn", ".*down(2|3|4)_conv", ".*layers(2|3|4)_conv"]
        )
894
        return get_faster_rcnn(
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
            name="resnet50_v1b",
            dataset="custom",
            pretrained=pretrained,
            features=features,
            top_features=top_features,
            classes=classes,
            short=600,
            max_size=1000,
            train_patterns=train_patterns,
            nms_thresh=0.7,
            nms_topk=400,
            post_nms=100,
            roi_mode="align",
            roi_size=(14, 14),
            strides=16,
            clip=4.14,
            rpn_channel=1024,
            base_size=16,
            scales=(2, 4, 8, 16, 32),
            ratios=(0.5, 1, 2),
            alloc_size=(128, 128),
            rpn_nms_thresh=0.7,
            rpn_train_pre_nms=12000,
            rpn_train_post_nms=2000,
            rpn_test_pre_nms=6000,
            rpn_test_post_nms=300,
            rpn_min_size=16,
            num_sample=128,
            pos_iou_thresh=0.5,
            pos_ratio=0.25,
            max_num_gt=3000,
            **kwargs
        )
928
929
    else:
        from gluoncv.model_zoo import get_model
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
930
931
932
933
934
935

        net = get_model(
            "faster_rcnn_resnet50_v1b_" + str(transfer),
            pretrained=True,
            **kwargs
        )
936
937
938
939
        reuse_classes = [x for x in classes if x in net.classes]
        net.reset_class(classes, reuse_weights=reuse_classes)
    return net

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
940
941
942
943

def faster_rcnn_resnet101_v1d_coco(
    pretrained=False, pretrained_base=True, **kwargs
):
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
    r"""Faster RCNN model from the paper
    "Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards
    real-time object detection with region proposal networks"

    Parameters
    ----------
    pretrained : bool, optional, default is False
        Load pretrained weights.
    pretrained_base : bool or str, optional, default is True
        Load pretrained base network, the extra layers are randomized. Note that
        if pretrained is `True`, this has no effect.
    ctx : Context, default CPU
        The context in which to load the pretrained weights.
    root : str, default '~/.mxnet/models'
        Location for keeping the model parameters.

    Examples
    --------
    >>> model = get_faster_rcnn_resnet101_v1d_coco(pretrained=True)
    >>> print(model)
    """
    from gluoncv.data import COCODetection
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
966
967
    from gluoncv.model_zoo.resnetv1b import resnet101_v1d

968
969
    classes = COCODetection.CLASSES
    pretrained_base = False if pretrained else pretrained_base
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
970
971
972
973
974
975
    base_network = resnet101_v1d(
        pretrained=pretrained_base,
        dilated=False,
        use_global_stats=True,
        **kwargs
    )
976
977
    features = nn.HybridSequential()
    top_features = nn.HybridSequential()
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
978
979
980
981
982
983
984
985
986
    for layer in [
        "conv1",
        "bn1",
        "relu",
        "maxpool",
        "layer1",
        "layer2",
        "layer3",
    ]:
987
        features.add(getattr(base_network, layer))
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
988
    for layer in ["layer4"]:
989
        top_features.add(getattr(base_network, layer))
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
990
991
992
    train_patterns = "|".join(
        [".*dense", ".*rpn", ".*down(2|3|4)_conv", ".*layers(2|3|4)_conv"]
    )
993
    return get_faster_rcnn(
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
        name="resnet101_v1d",
        dataset="coco",
        pretrained=pretrained,
        features=features,
        top_features=top_features,
        classes=classes,
        short=800,
        max_size=1333,
        train_patterns=train_patterns,
        nms_thresh=0.5,
        nms_topk=-1,
        post_nms=100,
        roi_mode="align",
        roi_size=(14, 14),
        strides=16,
        clip=4.14,
        rpn_channel=1024,
        base_size=16,
        scales=(2, 4, 8, 16, 32),
        ratios=(0.5, 1, 2),
        alloc_size=(128, 128),
        rpn_nms_thresh=0.7,
        rpn_train_pre_nms=12000,
        rpn_train_post_nms=2000,
        rpn_test_pre_nms=6000,
        rpn_test_post_nms=1000,
        rpn_min_size=1,
        num_sample=128,
        pos_iou_thresh=0.5,
        pos_ratio=0.25,
        max_num_gt=3000,
        **kwargs
    )


def faster_rcnn_resnet101_v1d_custom(
    classes, transfer=None, pretrained_base=True, pretrained=False, **kwargs
):
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
    r"""Faster RCNN model with resnet101_v1d base network on custom dataset.

    Parameters
    ----------
    classes : iterable of str
        Names of custom foreground classes. `len(classes)` is the number of foreground classes.
    transfer : str or None
        If not `None`, will try to reuse pre-trained weights from faster RCNN networks trained
        on other datasets.
    pretrained_base : bool or str
        Boolean value controls whether to load the default pretrained weights for model.
        String value represents the hashtag for a certain version of pretrained weights.
    ctx : Context, default CPU
        The context in which to load the pretrained weights.
    root : str, default '~/.mxnet/models'
        Location for keeping the model parameters.

    Returns
    -------
    mxnet.gluon.HybridBlock
        Hybrid faster RCNN network.
    """
    if pretrained:
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
1055
1056
1057
        warnings.warn(
            "Custom models don't provide `pretrained` weights, ignored."
        )
1058
1059
    if transfer is None:
        from gluoncv.model_zoo.resnetv1b import resnet101_v1d
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
1060
1061
1062
1063
1064
1065
1066

        base_network = resnet101_v1d(
            pretrained=pretrained_base,
            dilated=False,
            use_global_stats=True,
            **kwargs
        )
1067
1068
        features = nn.HybridSequential()
        top_features = nn.HybridSequential()
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
1069
1070
1071
1072
1073
1074
1075
1076
1077
        for layer in [
            "conv1",
            "bn1",
            "relu",
            "maxpool",
            "layer1",
            "layer2",
            "layer3",
        ]:
1078
            features.add(getattr(base_network, layer))
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
1079
        for layer in ["layer4"]:
1080
            top_features.add(getattr(base_network, layer))
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
1081
1082
1083
        train_patterns = "|".join(
            [".*dense", ".*rpn", ".*down(2|3|4)_conv", ".*layers(2|3|4)_conv"]
        )
1084
        return get_faster_rcnn(
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
            name="resnet101_v1d",
            dataset="custom",
            pretrained=pretrained,
            features=features,
            top_features=top_features,
            classes=classes,
            short=600,
            max_size=1000,
            train_patterns=train_patterns,
            nms_thresh=0.5,
            nms_topk=400,
            post_nms=100,
            roi_mode="align",
            roi_size=(14, 14),
            strides=16,
            clip=4.14,
            rpn_channel=1024,
            base_size=16,
            scales=(2, 4, 8, 16, 32),
            ratios=(0.5, 1, 2),
            alloc_size=(128, 128),
            rpn_nms_thresh=0.7,
            rpn_train_pre_nms=12000,
            rpn_train_post_nms=2000,
            rpn_test_pre_nms=6000,
            rpn_test_post_nms=300,
            rpn_min_size=16,
            num_sample=128,
            pos_iou_thresh=0.5,
            pos_ratio=0.25,
            max_num_gt=3000,
            **kwargs
        )
1118
1119
1120
1121
1122
    else:
        net = faster_rcnn_resnet101_v1d_coco(pretrained=True)
        reuse_classes = [x for x in classes if x in net.classes]
        net.reset_class(classes, reuse_weights=reuse_classes)
    return net