gcn_concat.py 6.3 KB
Newer Older
Ziyue Huang's avatar
Ziyue Huang committed
1
2
3
4
5
6
7
8
"""
Semi-Supervised Classification with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1609.02907
Code: https://github.com/tkipf/gcn
GCN with batch processing
"""
import argparse
import time
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
9

Ziyue Huang's avatar
Ziyue Huang committed
10
11
import dgl
import dgl.function as fn
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
12
13
14
15
16
17
18
19
20
import mxnet as mx
import numpy as np
from dgl.data import (
    CiteseerGraphDataset,
    CoraGraphDataset,
    PubmedGraphDataset,
    register_data_args,
)
from mxnet import gluon
Ziyue Huang's avatar
Ziyue Huang committed
21
22
23


class GCNLayer(gluon.Block):
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
24
    def __init__(self, g, out_feats, activation, dropout):
Ziyue Huang's avatar
Ziyue Huang committed
25
26
27
28
29
30
        super(GCNLayer, self).__init__()
        self.g = g
        self.dense = gluon.nn.Dense(out_feats, activation)
        self.dropout = dropout

    def forward(self, h):
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
31
32
33
34
35
36
        self.g.ndata["h"] = h * self.g.ndata["out_norm"]
        self.g.update_all(
            fn.copy_u(u="h", out="m"), fn.sum(msg="m", out="accum")
        )
        accum = self.g.ndata.pop("accum")
        accum = self.dense(accum * self.g.ndata["in_norm"])
Ziyue Huang's avatar
Ziyue Huang committed
37
38
        if self.dropout:
            accum = mx.nd.Dropout(accum, p=self.dropout)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
39
40
        h = self.g.ndata.pop("h")
        h = mx.nd.concat(h / self.g.ndata["out_norm"], accum, dim=1)
Ziyue Huang's avatar
Ziyue Huang committed
41
42
43
44
        return h


class GCN(gluon.Block):
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
45
    def __init__(self, g, n_hidden, n_classes, n_layers, activation, dropout):
Ziyue Huang's avatar
Ziyue Huang committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
        super(GCN, self).__init__()
        self.inp_layer = gluon.nn.Dense(n_hidden, activation)
        self.dropout = dropout
        self.layers = gluon.nn.Sequential()
        for i in range(n_layers):
            self.layers.add(GCNLayer(g, n_hidden, activation, dropout))
        self.out_layer = gluon.nn.Dense(n_classes)

    def forward(self, features):
        emb_inp = [features, self.inp_layer(features)]
        if self.dropout:
            emb_inp[-1] = mx.nd.Dropout(emb_inp[-1], p=self.dropout)
        h = mx.nd.concat(*emb_inp, dim=1)
        for layer in self.layers:
            h = layer(h)
        h = self.out_layer(h)
        return h


def evaluate(model, features, labels, mask):
    pred = model(features).argmax(axis=1)
    accuracy = ((pred == labels) * mask).sum() / mask.sum().asscalar()
    return accuracy.asscalar()


def main(args):
    # load and preprocess dataset
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
73
    if args.dataset == "cora":
74
        data = CoraGraphDataset()
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
75
    elif args.dataset == "citeseer":
76
        data = CiteseerGraphDataset()
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
77
    elif args.dataset == "pubmed":
78
79
        data = PubmedGraphDataset()
    else:
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
80
        raise ValueError("Unknown dataset: {}".format(args.dataset))
Ziyue Huang's avatar
Ziyue Huang committed
81

82
83
84
85
86
87
88
89
    g = data[0]
    if args.gpu < 0:
        cuda = False
        ctx = mx.cpu(0)
    else:
        cuda = True
        ctx = mx.gpu(args.gpu)
        g = g.to(ctx)
Ziyue Huang's avatar
Ziyue Huang committed
90

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
91
92
93
94
95
    features = g.ndata["feat"]
    labels = mx.nd.array(g.ndata["label"], dtype="float32", ctx=ctx)
    train_mask = g.ndata["train_mask"]
    val_mask = g.ndata["val_mask"]
    test_mask = g.ndata["test_mask"]
Ziyue Huang's avatar
Ziyue Huang committed
96
97
98
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
99
100
    print(
        """----Data statistics------'
Ziyue Huang's avatar
Ziyue Huang committed
101
102
103
104
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
105
106
107
108
109
110
111
112
113
      #Test samples %d"""
        % (
            n_edges,
            n_classes,
            train_mask.sum().asscalar(),
            val_mask.sum().asscalar(),
            test_mask.sum().asscalar(),
        )
    )
Ziyue Huang's avatar
Ziyue Huang committed
114

115
116
117
118
    # add self loop
    if args.self_loop:
        g = dgl.remove_self_loop(g)
        g = dgl.add_self_loop(g)
Ziyue Huang's avatar
Ziyue Huang committed
119
    # normalization
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
120
121
    in_degs = g.in_degrees().astype("float32")
    out_degs = g.out_degrees().astype("float32")
Ziyue Huang's avatar
Ziyue Huang committed
122
123
124
125
126
    in_norm = mx.nd.power(in_degs, -0.5)
    out_norm = mx.nd.power(out_degs, -0.5)
    if cuda:
        in_norm = in_norm.as_in_context(ctx)
        out_norm = out_norm.as_in_context(ctx)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
127
128
129
130
131
132
133
134
135
136
137
    g.ndata["in_norm"] = mx.nd.expand_dims(in_norm, 1)
    g.ndata["out_norm"] = mx.nd.expand_dims(out_norm, 1)

    model = GCN(
        g,
        args.n_hidden,
        n_classes,
        args.n_layers,
        "relu",
        args.dropout,
    )
Ziyue Huang's avatar
Ziyue Huang committed
138
139
140
141
142
143
    model.initialize(ctx=ctx)
    n_train_samples = train_mask.sum().asscalar()
    loss_fcn = gluon.loss.SoftmaxCELoss()

    # use optimizer
    print(model.collect_params())
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
144
145
146
147
148
    trainer = gluon.Trainer(
        model.collect_params(),
        "adam",
        {"learning_rate": args.lr, "wd": args.weight_decay},
    )
Ziyue Huang's avatar
Ziyue Huang committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        if epoch >= 3:
            t0 = time.time()
        # forward
        with mx.autograd.record():
            pred = model(features)
            loss = loss_fcn(pred, labels, mx.nd.expand_dims(train_mask, 1))
            loss = loss.sum() / n_train_samples

        loss.backward()
        trainer.step(batch_size=1)

        if epoch >= 3:
            dur.append(time.time() - t0)
            acc = evaluate(model, features, labels, val_mask)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
167
168
169
170
171
172
173
174
175
176
            print(
                "Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
                "ETputs(KTEPS) {:.2f}".format(
                    epoch,
                    np.mean(dur),
                    loss.asscalar(),
                    acc,
                    n_edges / np.mean(dur) / 1000,
                )
            )
Ziyue Huang's avatar
Ziyue Huang committed
177
178
179
180
181

    # test set accuracy
    acc = evaluate(model, features, labels, test_mask)
    print("Test accuracy {:.2%}".format(acc))

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
182
183
184

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="GCN")
Ziyue Huang's avatar
Ziyue Huang committed
185
    register_data_args(parser)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    parser.add_argument(
        "--dropout", type=float, default=0.5, help="dropout probability"
    )
    parser.add_argument("--gpu", type=int, default=-1, help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2, help="learning rate")
    parser.add_argument(
        "--n-epochs", type=int, default=200, help="number of training epochs"
    )
    parser.add_argument(
        "--n-hidden", type=int, default=16, help="number of hidden gcn units"
    )
    parser.add_argument(
        "--n-layers", type=int, default=1, help="number of hidden gcn layers"
    )
    parser.add_argument(
        "--normalization",
        choices=["sym", "left"],
        default=None,
        help="graph normalization types (default=None)",
    )
    parser.add_argument(
        "--self-loop",
        action="store_true",
        help="graph self-loop (default=False)",
    )
    parser.add_argument(
        "--weight-decay", type=float, default=5e-4, help="Weight for L2 loss"
    )
Ziyue Huang's avatar
Ziyue Huang committed
214
215
216
217
218
    args = parser.parse_args()

    print(args)

    main(args)