test_subgraph.py 24 KB
Newer Older
Minjie Wang's avatar
Minjie Wang committed
1
import numpy as np
2
3
4
5
import networkx as nx
import unittest
import scipy.sparse as ssp

6
import dgl
7
import backend as F
8
from test_utils import parametrize_dtype
Minjie Wang's avatar
Minjie Wang committed
9
10
11

D = 5

12
def generate_graph(grad=False, add_data=True):
13
    g = dgl.DGLGraph().to(F.ctx())
14
    g.add_nodes(10)
Minjie Wang's avatar
Minjie Wang committed
15
16
17
18
19
20
    # create a graph where 0 is the source and 9 is the sink
    for i in range(1, 9):
        g.add_edge(0, i)
        g.add_edge(i, 9)
    # add a back flow from 9 to 0
    g.add_edge(9, 0)
21
22
23
24
25
26
27
28
    if add_data:
        ncol = F.randn((10, D))
        ecol = F.randn((17, D))
        if grad:
            ncol = F.attach_grad(ncol)
            ecol = F.attach_grad(ecol)
        g.ndata['h'] = ncol
        g.edata['l'] = ecol
Minjie Wang's avatar
Minjie Wang committed
29
30
    return g

31
def test_edge_subgraph():
32
33
34
35
36
37
38
    # Test when the graph has no node data and edge data.
    g = generate_graph(add_data=False)
    eid = [0, 2, 3, 6, 7, 9]
    sg = g.edge_subgraph(eid)
    sg.ndata['h'] = F.arange(0, sg.number_of_nodes())
    sg.edata['h'] = F.arange(0, sg.number_of_edges())

39
def test_subgraph():
Minjie Wang's avatar
Minjie Wang committed
40
    g = generate_graph()
41
42
    h = g.ndata['h']
    l = g.edata['l']
Minjie Wang's avatar
Minjie Wang committed
43
44
    nid = [0, 2, 3, 6, 7, 9]
    sg = g.subgraph(nid)
45
    eid = {2, 3, 4, 5, 10, 11, 12, 13, 16}
46
47
    assert set(F.asnumpy(sg.edata[dgl.EID])) == eid
    eid = sg.edata[dgl.EID]
48
49
50
    # the subgraph is empty initially except for NID/EID field
    assert len(sg.ndata) == 2
    assert len(sg.edata) == 2
51
    sh = sg.ndata['h']
VoVAllen's avatar
VoVAllen committed
52
    assert F.allclose(F.gather_row(h, F.tensor(nid)), sh)
Minjie Wang's avatar
Minjie Wang committed
53
54
55
56
    '''
    s, d, eid
    0, 1, 0
    1, 9, 1
Minjie Wang's avatar
Minjie Wang committed
57
58
59
60
    0, 2, 2    1
    2, 9, 3    1
    0, 3, 4    1
    3, 9, 5    1
Minjie Wang's avatar
Minjie Wang committed
61
62
63
    0, 4, 6
    4, 9, 7
    0, 5, 8
Minjie Wang's avatar
Minjie Wang committed
64
65
66
67
68
    5, 9, 9       3
    0, 6, 10   1
    6, 9, 11   1  3
    0, 7, 12   1
    7, 9, 13   1  3
Minjie Wang's avatar
Minjie Wang committed
69
    0, 8, 14
Minjie Wang's avatar
Minjie Wang committed
70
71
    8, 9, 15      3
    9, 0, 16   1
Minjie Wang's avatar
Minjie Wang committed
72
    '''
73
    assert F.allclose(F.gather_row(l, eid), sg.edata['l'])
Minjie Wang's avatar
Minjie Wang committed
74
75
    # update the node/edge features on the subgraph should NOT
    # reflect to the parent graph.
76
77
    sg.ndata['h'] = F.zeros((6, D))
    assert F.allclose(h, g.ndata['h'])
Minjie Wang's avatar
Minjie Wang committed
78

79
80
def _test_map_to_subgraph():
    g = dgl.DGLGraph()
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
81
82
83
84
85
    g.add_nodes(10)
    g.add_edges(F.arange(0, 9), F.arange(1, 10))
    h = g.subgraph([0, 1, 2, 5, 8])
    v = h.map_to_subgraph_nid([0, 8, 2])
    assert np.array_equal(F.asnumpy(v), np.array([0, 4, 2]))
86
87
88
89
90
91
92
93
94
95

def create_test_heterograph(idtype):
    # test heterograph from the docstring, plus a user -- wishes -- game relation
    # 3 users, 2 games, 2 developers
    # metagraph:
    #    ('user', 'follows', 'user'),
    #    ('user', 'plays', 'game'),
    #    ('user', 'wishes', 'game'),
    #    ('developer', 'develops', 'game')])

96
97
98
99
100
101
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1])
    }, idtype=idtype, device=F.ctx())
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    assert g.idtype == idtype
    assert g.device == F.ctx()
    return g

@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="MXNet doesn't support bool tensor")
@parametrize_dtype
def test_subgraph_mask(idtype):
    g = create_test_heterograph(idtype)
    g_graph = g['follows']
    g_bipartite = g['plays']

    x = F.randn((3, 5))
    y = F.randn((2, 4))
    g.nodes['user'].data['h'] = x
    g.edges['follows'].data['h'] = y

    def _check_subgraph(g, sg):
        assert sg.idtype == g.idtype
        assert sg.device == g.device
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
        assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                             F.tensor([1, 2], idtype))
        assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
                             F.tensor([0], idtype))
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
                             F.tensor([1], idtype))
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
                             F.tensor([1], idtype))
        assert F.array_equal(F.tensor(sg.edges['wishes'].data[dgl.EID]),
                             F.tensor([1], idtype))
        assert sg.number_of_nodes('developer') == 0
        assert sg.number_of_edges('develops') == 0
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

    sg1 = g.subgraph({'user': F.tensor([False, True, True], dtype=F.bool),
                      'game': F.tensor([True, False, False, False], dtype=F.bool)})
    _check_subgraph(g, sg1)
142
143
144
145
    sg2 = g.edge_subgraph({'follows': F.tensor([False, True], dtype=F.bool),
                           'plays': F.tensor([False, True, False, False], dtype=F.bool),
                           'wishes': F.tensor([False, True], dtype=F.bool)})
    _check_subgraph(g, sg2)
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

@parametrize_dtype
def test_subgraph1(idtype):
    g = create_test_heterograph(idtype)
    g_graph = g['follows']
    g_bipartite = g['plays']

    x = F.randn((3, 5))
    y = F.randn((2, 4))
    g.nodes['user'].data['h'] = x
    g.edges['follows'].data['h'] = y

    def _check_subgraph(g, sg):
        assert sg.idtype == g.idtype
        assert sg.device == g.device
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
        assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                             F.tensor([1, 2], g.idtype))
        assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
                             F.tensor([0], g.idtype))
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
                             F.tensor([1], g.idtype))
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
                             F.tensor([1], g.idtype))
        assert F.array_equal(F.tensor(sg.edges['wishes'].data[dgl.EID]),
                             F.tensor([1], g.idtype))
        assert sg.number_of_nodes('developer') == 0
        assert sg.number_of_edges('develops') == 0
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

    sg1 = g.subgraph({'user': [1, 2], 'game': [0]})
    _check_subgraph(g, sg1)
181
182
    sg2 = g.edge_subgraph({'follows': [1], 'plays': [1], 'wishes': [1]})
    _check_subgraph(g, sg2)
183
184
185
186
187

    # backend tensor input
    sg1 = g.subgraph({'user': F.tensor([1, 2], dtype=idtype),
                      'game': F.tensor([0], dtype=idtype)})
    _check_subgraph(g, sg1)
188
189
190
191
    sg2 = g.edge_subgraph({'follows': F.tensor([1], dtype=idtype),
                           'plays': F.tensor([1], dtype=idtype),
                           'wishes': F.tensor([1], dtype=idtype)})
    _check_subgraph(g, sg2)
192
193
194
195
196

    # numpy input
    sg1 = g.subgraph({'user': np.array([1, 2]),
                      'game': np.array([0])})
    _check_subgraph(g, sg1)
197
198
199
200
    sg2 = g.edge_subgraph({'follows': np.array([1]),
                           'plays': np.array([1]),
                           'wishes': np.array([1])})
    _check_subgraph(g, sg2)
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

    def _check_subgraph_single_ntype(g, sg, preserve_nodes=False):
        assert sg.idtype == g.idtype
        assert sg.device == g.device
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes

        if not preserve_nodes:
            assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                                 F.tensor([1, 2], g.idtype))
        else:
            for ntype in sg.ntypes:
                assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)

        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
                             F.tensor([1], g.idtype))

        if not preserve_nodes:
            assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

    def _check_subgraph_single_etype(g, sg, preserve_nodes=False):
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes

        if not preserve_nodes:
            assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                                 F.tensor([0, 1], g.idtype))
            assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
                                 F.tensor([0], g.idtype))
        else:
            for ntype in sg.ntypes:
                assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)

        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
                             F.tensor([0, 1], g.idtype))

    sg1_graph = g_graph.subgraph([1, 2])
    _check_subgraph_single_ntype(g_graph, sg1_graph)
242
243
244
245
246
247
248
249
    sg1_graph = g_graph.edge_subgraph([1])
    _check_subgraph_single_ntype(g_graph, sg1_graph)
    sg1_graph = g_graph.edge_subgraph([1], relabel_nodes=False)
    _check_subgraph_single_ntype(g_graph, sg1_graph, True)
    sg2_bipartite = g_bipartite.edge_subgraph([0, 1])
    _check_subgraph_single_etype(g_bipartite, sg2_bipartite)
    sg2_bipartite = g_bipartite.edge_subgraph([0, 1], relabel_nodes=False)
    _check_subgraph_single_etype(g_bipartite, sg2_bipartite, True)
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

    def _check_typed_subgraph1(g, sg):
        assert g.idtype == sg.idtype
        assert g.device == sg.device
        assert set(sg.ntypes) == {'user', 'game'}
        assert set(sg.etypes) == {'follows', 'plays', 'wishes'}
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
            src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
            src_g, dst_g = g.all_edges(etype=etype, order='eid')
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])
        g.nodes['user'].data['h'] = F.scatter_row(g.nodes['user'].data['h'], F.tensor([2]), F.randn((1, 5)))
        g.edges['follows'].data['h'] = F.scatter_row(g.edges['follows'].data['h'], F.tensor([1]), F.randn((1, 4)))
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])

    def _check_typed_subgraph2(g, sg):
        assert set(sg.ntypes) == {'developer', 'game'}
        assert set(sg.etypes) == {'develops'}
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
            src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
            src_g, dst_g = g.all_edges(etype=etype, order='eid')
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)

    sg3 = g.node_type_subgraph(['user', 'game'])
    _check_typed_subgraph1(g, sg3)
    sg4 = g.edge_type_subgraph(['develops'])
    _check_typed_subgraph2(g, sg4)
    sg5 = g.edge_type_subgraph(['follows', 'plays', 'wishes'])
    _check_typed_subgraph1(g, sg5)

    # Test for restricted format
289
290
291
292
293
294
295
296
297
298
    for fmt in ['csr', 'csc', 'coo']:
        g = dgl.graph(([0, 1], [1, 2])).formats(fmt)
        sg = g.subgraph({g.ntypes[0]: [1, 0]})
        nids = F.asnumpy(sg.ndata[dgl.NID])
        assert np.array_equal(nids, np.array([1, 0]))
        src, dst = sg.edges(order='eid')
        src = F.asnumpy(src)
        dst = F.asnumpy(dst)
        assert np.array_equal(src, np.array([1]))

299
300
@parametrize_dtype
def test_in_subgraph(idtype):
301
302
303
304
305
    hg = dgl.heterograph({
        ('user', 'follow', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2]),
        ('user', 'play', 'game'): ([0, 0, 1, 3], [0, 1, 2, 2]),
        ('game', 'liked-by', 'user'): ([2, 2, 2, 1, 1, 0], [0, 1, 2, 0, 3, 0]),
        ('user', 'flips', 'coin'): ([0, 1, 2, 3], [0, 0, 0, 0])
306
    }, idtype=idtype, num_nodes_dict={'user': 5, 'game': 10, 'coin': 8}).to(F.ctx())
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    subg = dgl.in_subgraph(hg, {'user' : [0,1], 'game' : 0})
    assert subg.idtype == idtype
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4
    u, v = subg['follow'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID])
    assert edge_set == {(1,0),(2,0),(3,0),(0,1),(2,1),(3,1)}
    u, v = subg['play'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID])
    assert edge_set == {(0,0)}
    u, v = subg['liked-by'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID])
    assert edge_set == {(2,0),(2,1),(1,0),(0,0)}
    assert subg['flips'].number_of_edges() == 0
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
    for ntype in subg.ntypes:
        assert dgl.NID not in subg.nodes[ntype].data

    # Test store_ids
    subg = dgl.in_subgraph(hg, {'user': [0, 1], 'game': 0}, store_ids=False)
    for etype in ['follow', 'play', 'liked-by']:
        assert dgl.EID not in subg.edges[etype].data
    for ntype in subg.ntypes:
        assert dgl.NID not in subg.nodes[ntype].data

    # Test relabel nodes
    subg = dgl.in_subgraph(hg, {'user': [0, 1], 'game': 0}, relabel_nodes=True)
    assert subg.idtype == idtype
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4

    u, v = subg['follow'].edges()
    old_u = F.gather_row(subg.nodes['user'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['user'].data[dgl.NID], v)
    assert F.array_equal(hg['follow'].edge_ids(old_u, old_v), subg['follow'].edata[dgl.EID])
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(1,0),(2,0),(3,0),(0,1),(2,1),(3,1)}

    u, v = subg['play'].edges()
    old_u = F.gather_row(subg.nodes['user'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['game'].data[dgl.NID], v)
    assert F.array_equal(hg['play'].edge_ids(old_u, old_v), subg['play'].edata[dgl.EID])
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(0,0)}

    u, v = subg['liked-by'].edges()
    old_u = F.gather_row(subg.nodes['game'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['user'].data[dgl.NID], v)
    assert F.array_equal(hg['liked-by'].edge_ids(old_u, old_v), subg['liked-by'].edata[dgl.EID])
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(2,0),(2,1),(1,0),(0,0)}

    assert subg.num_nodes('user') == 4
    assert subg.num_nodes('game') == 3
    assert subg.num_nodes('coin') == 0
    assert subg.num_edges('flips') == 0
365
366
367

@parametrize_dtype
def test_out_subgraph(idtype):
368
369
370
371
372
    hg = dgl.heterograph({
        ('user', 'follow', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2]),
        ('user', 'play', 'game'): ([0, 0, 1, 3], [0, 1, 2, 2]),
        ('game', 'liked-by', 'user'): ([2, 2, 2, 1, 1, 0], [0, 1, 2, 0, 3, 0]),
        ('user', 'flips', 'coin'): ([0, 1, 2, 3], [0, 0, 0, 0])
373
    }, idtype=idtype).to(F.ctx())
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
    subg = dgl.out_subgraph(hg, {'user' : [0,1], 'game' : 0})
    assert subg.idtype == idtype
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4
    u, v = subg['follow'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(1,0),(0,1),(0,2)}
    assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID])
    u, v = subg['play'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,0),(0,1),(1,2)}
    assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID])
    u, v = subg['liked-by'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,0)}
    assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID])
    u, v = subg['flips'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,0),(1,0)}
    assert F.array_equal(hg['flips'].edge_ids(u, v), subg['flips'].edata[dgl.EID])
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
    for ntype in subg.ntypes:
        assert dgl.NID not in subg.nodes[ntype].data

    # Test store_ids
    subg = dgl.out_subgraph(hg, {'user' : [0,1], 'game' : 0}, store_ids=False)
    for etype in subg.canonical_etypes:
        assert dgl.EID not in subg.edges[etype].data
    for ntype in subg.ntypes:
        assert dgl.NID not in subg.nodes[ntype].data

    # Test relabel nodes
    subg = dgl.out_subgraph(hg, {'user': [1], 'game': 0}, relabel_nodes=True)
    assert subg.idtype == idtype
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4

    u, v = subg['follow'].edges()
    old_u = F.gather_row(subg.nodes['user'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['user'].data[dgl.NID], v)
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(1, 0)}
    assert F.array_equal(hg['follow'].edge_ids(old_u, old_v), subg['follow'].edata[dgl.EID])

    u, v = subg['play'].edges()
    old_u = F.gather_row(subg.nodes['user'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['game'].data[dgl.NID], v)
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(1, 2)}
    assert F.array_equal(hg['play'].edge_ids(old_u, old_v), subg['play'].edata[dgl.EID])

    u, v = subg['liked-by'].edges()
    old_u = F.gather_row(subg.nodes['game'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['user'].data[dgl.NID], v)
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(0,0)}
    assert F.array_equal(hg['liked-by'].edge_ids(old_u, old_v), subg['liked-by'].edata[dgl.EID])

    u, v = subg['flips'].edges()
    old_u = F.gather_row(subg.nodes['user'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['coin'].data[dgl.NID], v)
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(1,0)}
    assert F.array_equal(hg['flips'].edge_ids(old_u, old_v), subg['flips'].edata[dgl.EID])
    assert subg.num_nodes('user') == 2
    assert subg.num_nodes('game') == 2
    assert subg.num_nodes('coin') == 1
440
441
442
443
444
445
446

def test_subgraph_message_passing():
    # Unit test for PR #2055
    g = dgl.graph(([0, 1, 2], [2, 3, 4])).to(F.cpu())
    g.ndata['x'] = F.copy_to(F.randn((5, 6)), F.cpu())
    sg = g.subgraph([1, 2, 3]).to(F.ctx())
    sg.update_all(lambda edges: {'x': edges.src['x']}, lambda nodes: {'y': F.sum(nodes.mailbox['x'], 1)})
447
448
449
450
451
452
453
454
455
456
457

@parametrize_dtype
def test_khop_in_subgraph(idtype):
    g = dgl.graph(([1, 1, 2, 3, 4], [0, 2, 0, 4, 2]), idtype=idtype, device=F.ctx())
    g.edata['w'] = F.tensor([
        [0, 1],
        [2, 3],
        [4, 5],
        [6, 7],
        [8, 9]
    ])
Mufei Li's avatar
Mufei Li committed
458
    sg, inv = dgl.khop_in_subgraph(g, 0, k=2)
459
460
461
462
463
464
465
466
467
468
469
    assert sg.idtype == g.idtype
    u, v = sg.edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(1,0), (1,2), (2,0), (3,2)}
    assert F.array_equal(sg.edata[dgl.EID], F.tensor([0, 1, 2, 4], dtype=idtype))
    assert F.array_equal(sg.edata['w'], F.tensor([
        [0, 1],
        [2, 3],
        [4, 5],
        [8, 9]
    ]))
Mufei Li's avatar
Mufei Li committed
470
    assert F.array_equal(F.astype(inv, idtype), F.tensor([0], idtype))
471
472

    # Test multiple nodes
Mufei Li's avatar
Mufei Li committed
473
    sg, inv = dgl.khop_in_subgraph(g, [0, 2], k=1)
474
475
    assert sg.num_edges() == 4

Mufei Li's avatar
Mufei Li committed
476
    sg, inv = dgl.khop_in_subgraph(g, F.tensor([0, 2], idtype), k=1)
477
478
479
    assert sg.num_edges() == 4

    # Test isolated node
Mufei Li's avatar
Mufei Li committed
480
    sg, inv = dgl.khop_in_subgraph(g, 1, k=2)
481
482
483
    assert sg.idtype == g.idtype
    assert sg.num_nodes() == 1
    assert sg.num_edges() == 0
Mufei Li's avatar
Mufei Li committed
484
    assert F.array_equal(F.astype(inv, idtype), F.tensor([0], idtype))
485
486
487
488
489

    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1, 1, 2], [0, 0, 2, 1]),
        ('user', 'follows', 'user'): ([0, 1, 1], [1, 2, 2]),
    }, idtype=idtype, device=F.ctx())
Mufei Li's avatar
Mufei Li committed
490
    sg, inv = dgl.khop_in_subgraph(g, {'game': 0}, k=2)
491
492
493
494
495
496
497
498
499
500
501
    assert sg.idtype == idtype
    assert sg.num_nodes('game') == 1
    assert sg.num_nodes('user') == 2
    assert len(sg.ntypes) == 2
    assert len(sg.etypes) == 2
    u, v = sg['follows'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 1)}
    u, v = sg['plays'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 0), (1, 0)}
Mufei Li's avatar
Mufei Li committed
502
    assert F.array_equal(F.astype(inv['game'], idtype), F.tensor([0], idtype))
503
504

    # Test isolated node
Mufei Li's avatar
Mufei Li committed
505
    sg, inv = dgl.khop_in_subgraph(g, {'user': 0}, k=2)
506
507
508
509
510
    assert sg.idtype == idtype
    assert sg.num_nodes('game') == 0
    assert sg.num_nodes('user') == 1
    assert sg.num_edges('follows') == 0
    assert sg.num_edges('plays') == 0
Mufei Li's avatar
Mufei Li committed
511
    assert F.array_equal(F.astype(inv['user'], idtype), F.tensor([0], idtype))
512
513

    # Test multiple nodes
Mufei Li's avatar
Mufei Li committed
514
    sg, inv = dgl.khop_in_subgraph(g, {'user': F.tensor([0, 1], idtype), 'game': 0}, k=1)
515
516
517
518
519
520
    u, v = sg['follows'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 1)}
    u, v = sg['plays'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 0), (1, 0)}
Mufei Li's avatar
Mufei Li committed
521
522
    assert F.array_equal(F.astype(inv['user'], idtype), F.tensor([0, 1], idtype))
    assert F.array_equal(F.astype(inv['game'], idtype), F.tensor([0], idtype))
523
524
525
526
527
528
529
530
531
532
533

@parametrize_dtype
def test_khop_out_subgraph(idtype):
    g = dgl.graph(([0, 2, 0, 4, 2], [1, 1, 2, 3, 4]), idtype=idtype, device=F.ctx())
    g.edata['w'] = F.tensor([
        [0, 1],
        [2, 3],
        [4, 5],
        [6, 7],
        [8, 9]
    ])
Mufei Li's avatar
Mufei Li committed
534
    sg, inv = dgl.khop_out_subgraph(g, 0, k=2)
535
536
537
538
539
540
541
542
543
544
545
    assert sg.idtype == g.idtype
    u, v = sg.edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,1), (2,1), (0,2), (2,3)}
    assert F.array_equal(sg.edata[dgl.EID], F.tensor([0, 2, 1, 4], dtype=idtype))
    assert F.array_equal(sg.edata['w'], F.tensor([
        [0, 1],
        [4, 5],
        [2, 3],
        [8, 9]
    ]))
Mufei Li's avatar
Mufei Li committed
546
    assert F.array_equal(F.astype(inv, idtype), F.tensor([0], idtype))
547
548

    # Test multiple nodes
Mufei Li's avatar
Mufei Li committed
549
    sg, inv = dgl.khop_out_subgraph(g, [0, 2], k=1)
550
551
    assert sg.num_edges() == 4

Mufei Li's avatar
Mufei Li committed
552
    sg, inv = dgl.khop_out_subgraph(g, F.tensor([0, 2], idtype), k=1)
553
554
555
    assert sg.num_edges() == 4

    # Test isolated node
Mufei Li's avatar
Mufei Li committed
556
    sg, inv = dgl.khop_out_subgraph(g, 1, k=2)
557
558
559
    assert sg.idtype == g.idtype
    assert sg.num_nodes() == 1
    assert sg.num_edges() == 0
Mufei Li's avatar
Mufei Li committed
560
    assert F.array_equal(F.astype(inv, idtype), F.tensor([0], idtype))
561
562
563
564
565

    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1, 1, 2], [0, 0, 2, 1]),
        ('user', 'follows', 'user'): ([0, 1], [1, 3]),
    }, idtype=idtype, device=F.ctx())
Mufei Li's avatar
Mufei Li committed
566
    sg, inv = dgl.khop_out_subgraph(g, {'user': 0}, k=2)
567
568
569
570
571
572
573
574
575
576
577
    assert sg.idtype == idtype
    assert sg.num_nodes('game') == 2
    assert sg.num_nodes('user') == 3
    assert len(sg.ntypes) == 2
    assert len(sg.etypes) == 2
    u, v = sg['follows'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 1), (1, 2)}
    u, v = sg['plays'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,0), (1,0), (1,1)}
Mufei Li's avatar
Mufei Li committed
578
    assert F.array_equal(F.astype(inv['user'], idtype), F.tensor([0], idtype))
579
580

    # Test isolated node
Mufei Li's avatar
Mufei Li committed
581
    sg, inv = dgl.khop_out_subgraph(g, {'user': 3}, k=2)
582
583
584
585
586
    assert sg.idtype == idtype
    assert sg.num_nodes('game') == 0
    assert sg.num_nodes('user') == 1
    assert sg.num_edges('follows') == 0
    assert sg.num_edges('plays') == 0
Mufei Li's avatar
Mufei Li committed
587
    assert F.array_equal(F.astype(inv['user'], idtype), F.tensor([0], idtype))
588
589

    # Test multiple nodes
Mufei Li's avatar
Mufei Li committed
590
    sg, inv = dgl.khop_out_subgraph(g, {'user': F.tensor([2], idtype), 'game': 0}, k=1)
591
592
593
594
    assert sg.num_edges('follows') == 0
    u, v = sg['plays'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 1)}
Mufei Li's avatar
Mufei Li committed
595
596
    assert F.array_equal(F.astype(inv['user'], idtype), F.tensor([0], idtype))
    assert F.array_equal(F.astype(inv['game'], idtype), F.tensor([0], idtype))
597
598
599

if __name__ == '__main__':
    test_khop_out_subgraph(F.int64)