node_classification.py 4.17 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
"""
[Semi-Supervised Classification with Graph Convolutional Networks]
(https://arxiv.org/abs/1609.02907)
"""
import dgl.graphbolt as gb
import dgl.nn as dglnn
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchmetrics.functional as MF


############################################################################
# (HIGHLIGHT) Create a single process dataloader with dgl graphbolt package.
############################################################################
def create_dataloader(dateset, itemset, device):
    # Sample seed nodes from the itemset.
    datapipe = gb.ItemSampler(itemset, batch_size=8)

    # Sample neighbors for the seed nodes.
    datapipe = datapipe.sample_neighbor(dataset.graph, fanouts=[4, 2])

    # Fetch features for sampled nodes.
    datapipe = datapipe.fetch_feature(
        dataset.feature, node_feature_keys=["feat"]
    )

    # Convert the mini-batch to DGL format to train a DGL model.
    datapipe = datapipe.to_dgl()

    # Copy the mini-batch to the designated device for training.
    datapipe = datapipe.copy_to(device)

    # Initiate the dataloader for the datapipe.
    return gb.SingleProcessDataLoader(datapipe)


class GCN(nn.Module):
    def __init__(self, in_size, out_size, hidden_size=16):
        super().__init__()
        self.layers = nn.ModuleList()
        self.layers.append(dglnn.GraphConv(in_size, hidden_size))
        self.layers.append(dglnn.GraphConv(hidden_size, out_size))

    def forward(self, blocks, x):
        hidden_x = x
        for layer_idx, (layer, block) in enumerate(zip(self.layers, blocks)):
            hidden_x = layer(block, hidden_x)
            is_last_layer = layer_idx == len(self.layers) - 1
            if not is_last_layer:
                hidden_x = F.relu(hidden_x)
        return hidden_x


@torch.no_grad()
def evaluate(model, dataset, itemset, device):
    model.eval()
    y = []
    y_hats = []
    dataloader = create_dataloader(dataset, itemset, device)

    for step, data in enumerate(dataloader):
        x = data.node_features["feat"]
        y.append(data.labels)
        y_hats.append(model(data.blocks, x))

    return MF.accuracy(
        torch.cat(y_hats),
        torch.cat(y),
        task="multiclass",
        num_classes=dataset.tasks[0].metadata["num_classes"],
    )


def train(model, dataset, device):
    task = dataset.tasks[0]
    dataloader = create_dataloader(dataset, task.train_set, device)
    optimizer = torch.optim.Adam(model.parameters(), lr=1e-2)

    for epoch in range(10):
        model.train()
        total_loss = 0
        ########################################################################
        # (HIGHLIGHT) Iterate over the dataloader and train the model with all
        # mini-batches.
        ########################################################################
        for step, data in enumerate(dataloader):
            # The features of sampled nodes.
            x = data.node_features["feat"]

            # The ground truth labels of the seed nodes.
            y = data.labels

            # Forward.
            y_hat = model(data.blocks, x)

            # Compute loss.
            loss = F.cross_entropy(y_hat, y)

            # Backward.
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            total_loss += loss.item()

        # Evaluate the model.
        val_acc = evaluate(model, dataset, task.validation_set, device)
        test_acc = evaluate(model, dataset, task.test_set, device)
        print(
            f"Epoch {epoch:03d} | Loss {total_loss / (step + 1):.3f} | "
            f"Val Acc {val_acc.item():.3f} | Test Acc {test_acc.item():.3f}"
        )


if __name__ == "__main__":
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print(f"Training in {device} mode.")

    # Load and preprocess dataset.
    print("Loading data...")
    dataset = gb.OnDiskDataset(
        "examples/sampling/graphbolt/quickstart/cora/"
    ).load()

    in_size = dataset.feature.size("node", None, "feat")[0]
    out_size = dataset.tasks[0].metadata["num_classes"]
    model = GCN(in_size, out_size).to(device)

    # Model training.
    print("Training...")
    train(model, dataset, device)