traversal.h 5.77 KB
Newer Older
GaiYu0's avatar
GaiYu0 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/*!
 *  Copyright (c) 2018 by Contributors
 * \file graph/traversal.h
 * \brief Graph traversal routines.
 *
 * Traversal routines generate frontiers. Frontiers can be node frontiers or edge
 * frontiers depending on the traversal function. Each frontier is a
 * list of nodes/edges (specified by their ids). An optional tag can be specified
 * for each node/edge (represented by an int value).
 */
#ifndef DGL_GRAPH_TRAVERSAL_H_
#define DGL_GRAPH_TRAVERSAL_H_

#include <dgl/graph.h>
#include <stack>
#include <tuple>
#include <vector>

namespace dgl {
namespace traverse {

/*!
 * \brief Traverse the graph in a breadth-first-search (BFS) order.
 *
 * \param sources Source nodes.
 * \param reversed If true, BFS follows the in-edge direction
 * \param visit The function to call when a node is visited; the node id will be
 *              given as its only argument.
 * \param make_frontier The function to make a new froniter; the function should return a
 *                      node iterator to the just created frontier.
 */
template<typename VisitFn, typename FrontierFn>
void BFSNodes(const Graph& graph,
              IdArray source,
              bool reversed,
              VisitFn visit,
              FrontierFn make_frontier) {
  const int64_t len = source->shape[0];
  const int64_t* src_data = static_cast<int64_t*>(source->data);

  std::vector<bool> visited(graph.NumVertices());
  for (int64_t i = 0; i < len; ++i) {
    visited[src_data[i]] = true;
    visit(src_data[i]);
  }
  auto frontier = make_frontier();

  const auto neighbor_iter = reversed? &Graph::PredVec : &Graph::SuccVec;
  while (frontier.size() != 0) {
    for (const dgl_id_t u : frontier) {
      for (auto v : (graph.*neighbor_iter)(u)) {
        if (!visited[v]) {
          visit(v);
          visited[v] = true;
        }
      }
    }
    frontier = make_frontier();
  }
}

/*!
 * \brief Traverse the graph in topological order.
 *
 * \param reversed If true, follows the in-edge direction
 * \param visit The function to call when a node is visited; the node id will be
 *              given as its only argument.
 * \param make_frontier The function to make a new froniter; the function should return a
 *                      node iterator to the just created frontier.
 */
template<typename VisitFn, typename FrontierFn>
void TopologicalNodes(const Graph& graph,
                      bool reversed,
                      VisitFn visit,
                      FrontierFn make_frontier) {
  const auto get_degree = reversed? &Graph::OutDegree : &Graph::InDegree;
  const auto neighbor_iter = reversed? &Graph::PredVec : &Graph::SuccVec;
  uint64_t num_visited_nodes = 0;
  std::vector<uint64_t> degrees(graph.NumVertices(), 0);
  for (dgl_id_t vid = 0; vid < graph.NumVertices(); ++vid) {
    degrees[vid] = (graph.*get_degree)(vid);
    if (degrees[vid] == 0) {
      visit(vid);
      ++num_visited_nodes;
    }
  }
  auto frontier = make_frontier();

  while (frontier.size() != 0) {
    for (const dgl_id_t u : frontier) {
      for (auto v : (graph.*neighbor_iter)(u)) {
        if (--(degrees[v]) == 0) {
          visit(v);
          ++num_visited_nodes;
        }
      }
    }
    // new node frointer
    frontier = make_frontier();
  }
  if (num_visited_nodes != graph.NumVertices()) {
    LOG(FATAL) << "Error in topological traversal: loop detected in the given graph.";
  }
}

/*!\brief Tags for ``DFSEdges``. */
enum DFSEdgeTag {
  kForward = 0,
  kReverse,
  kNonTree,
};
/*!
 * \brief Traverse the graph in a depth-first-search (DFS) order.
 *
 * The traversal visit edges in its DFS order. Edges have three tags:
 * FORWARD(0), REVERSE(1), NONTREE(2)
 *
 * A FORWARD edge is one in which `u` has been visisted but `v` has not.
 * A REVERSE edge is one in which both `u` and `v` have been visisted and the edge
 * is in the DFS tree.
 * A NONTREE edge is one in which both `u` and `v` have been visisted but the edge
 * is NOT in the DFS tree.
 *
 * \param source Source node.
 * \param reversed If true, DFS follows the in-edge direction
 * \param has_reverse_edge If true, REVERSE edges are included
 * \param has_nontree_edge If true, NONTREE edges are included
 * \param visit The function to call when an edge is visited; the edge id and its
 *              tag will be given as the arguments.
 */
template<typename VisitFn>
void DFSLabeledEdges(const Graph& graph,
                     dgl_id_t source,
                     bool reversed,
                     bool has_reverse_edge,
                     bool has_nontree_edge,
                     VisitFn visit) {
  const auto succ = reversed? &Graph::PredVec : &Graph::SuccVec;
  const auto out_edge = reversed? &Graph::InEdgeVec : &Graph::OutEdgeVec;

  if ((graph.*succ)(source).size() == 0) {
    // no out-going edges from the source node
    return;
  }

  typedef std::tuple<dgl_id_t, size_t, bool> StackEntry;
  std::stack<StackEntry> stack;
  std::vector<bool> visited(graph.NumVertices());
  visited[source] = true;
  stack.push(std::make_tuple(source, 0, false));
  dgl_id_t u = 0;
  size_t i = 0;
  bool on_tree = false;

  while (!stack.empty()) {
    std::tie(u, i, on_tree) = stack.top();
    const dgl_id_t v = (graph.*succ)(u)[i];
    const dgl_id_t uv = (graph.*out_edge)(u)[i];
    if (visited[v]) {
      if (!on_tree && has_nontree_edge) {
        visit(uv, kNonTree);
      } else if (on_tree && has_reverse_edge) {
        visit(uv, kReverse);
      }
      stack.pop();
      // find next one.
      if (i < (graph.*succ)(u).size() - 1) {
        stack.push(std::make_tuple(u, i+1, false));
      }
    } else {
      visited[v] = true;
      std::get<2>(stack.top()) = true;
      visit(uv, kForward);
      // expand
      if ((graph.*succ)(v).size() > 0) {
        stack.push(std::make_tuple(v, 0, false));
      }
    }
  }
}

}  // namespace traverse
}  // namespace dgl

#endif  // DGL_GRAPH_TRAVERSAL_H_