test_basics.py 7.85 KB
Newer Older
Da Zheng's avatar
Da Zheng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import os
os.environ['DGLBACKEND'] = 'mxnet'
import mxnet as mx
import numpy as np
from dgl.graph import DGLGraph

D = 5
reduce_msg_shapes = set()

def check_eq(a, b):
    assert a.shape == b.shape
    assert mx.sum(a == b) == int(np.prod(list(a.shape)))

def message_func(src, edge):
    assert len(src['h'].shape) == 2
    assert src['h'].shape[1] == D
    return {'m' : src['h']}

def reduce_func(node, msgs):
    msgs = msgs['m']
    reduce_msg_shapes.add(tuple(msgs.shape))
    assert len(msgs.shape) == 3
    assert msgs.shape[2] == D
    return {'m' : mx.nd.sum(msgs, 1)}

def apply_node_func(node):
    return {'h' : node['h'] + node['m']}

def generate_graph(grad=False):
    g = DGLGraph()
    g.add_nodes(10) # 10 nodes.
    # create a graph where 0 is the source and 9 is the sink
    for i in range(1, 9):
        g.add_edge(0, i)
        g.add_edge(i, 9)
    # add a back flow from 9 to 0
    g.add_edge(9, 0)
    ncol = mx.nd.random.normal(shape=(10, D))
    if grad:
        ncol.attach_grad()
    g.set_n_repr({'h' : ncol})
    return g

def test_batch_setter_getter():
    def _pfc(x):
        return list(x.asnumpy()[:,0])
    g = generate_graph()
    # set all nodes
    g.set_n_repr({'h' : mx.nd.zeros((10, D))})
    assert _pfc(g.get_n_repr()['h']) == [0.] * 10
    # pop nodes
    assert _pfc(g.pop_n_repr('h')) == [0.] * 10
    assert len(g.get_n_repr()) == 0
    g.set_n_repr({'h' : mx.nd.zeros((10, D))})
    # set partial nodes
    # TODO we need to enable the test later.
    '''
    u = mx.nd.array([1, 3, 5], dtype='int64')
    g.set_n_repr({'h' : mx.nd.ones((3, D))}, u)
    assert _pfc(g.get_n_repr()['h']) == [0., 1., 0., 1., 0., 1., 0., 0., 0., 0.]
    # get partial nodes
    u = mx.nd.array([1, 2, 3], dtype='int64')
    print(g.get_n_repr(u)['h'])
    assert _pfc(g.get_n_repr(u)['h']) == [1., 0., 1.]
    '''

    '''
    s, d, eid
    0, 1, 0
    1, 9, 1
    0, 2, 2
    2, 9, 3
    0, 3, 4
    3, 9, 5
    0, 4, 6
    4, 9, 7
    0, 5, 8
    5, 9, 9
    0, 6, 10
    6, 9, 11
    0, 7, 12
    7, 9, 13
    0, 8, 14
    8, 9, 15
    9, 0, 16
    '''
    # set all edges
    g.set_e_repr({'l' : mx.nd.zeros((17, D))})
    assert _pfc(g.get_e_repr()['l']) == [0.] * 17
    # pop edges
    assert _pfc(g.pop_e_repr('l')) == [0.] * 17
    assert len(g.get_e_repr()) == 0
    g.set_e_repr({'l' : mx.nd.zeros((17, D))})
    # set partial edges (many-many)
    u = mx.nd.array([0, 0, 2, 5, 9], dtype='int64')
    v = mx.nd.array([1, 3, 9, 9, 0], dtype='int64')
    g.set_e_repr({'l' : mx.nd.ones((5, D))}, u, v)
    truth = [0.] * 17
    truth[0] = truth[4] = truth[3] = truth[9] = truth[16] = 1.
    assert _pfc(g.get_e_repr()['l']) == truth
    # set partial edges (many-one)
    u = mx.nd.array([3, 4, 6], dtype='int64')
    v = mx.nd.array([9], dtype='int64')
    g.set_e_repr({'l' : mx.nd.ones((3, D))}, u, v)
    truth[5] = truth[7] = truth[11] = 1.
    assert _pfc(g.get_e_repr()['l']) == truth
    # set partial edges (one-many)
    u = mx.nd.array([0], dtype='int64')
    v = mx.nd.array([4, 5, 6], dtype='int64')
    g.set_e_repr({'l' : mx.nd.ones((3, D))}, u, v)
    truth[6] = truth[8] = truth[10] = 1.
    assert _pfc(g.get_e_repr()['l']) == truth
    # get partial edges (many-many)
    u = mx.nd.array([0, 6, 0], dtype='int64')
    v = mx.nd.array([6, 9, 7], dtype='int64')
    assert _pfc(g.get_e_repr(u, v)['l']) == [1., 1., 0.]
    # get partial edges (many-one)
    u = mx.nd.array([5, 6, 7], dtype='int64')
    v = mx.nd.array([9], dtype='int64')
    assert _pfc(g.get_e_repr(u, v)['l']) == [1., 1., 0.]
    # get partial edges (one-many)
    u = mx.nd.array([0], dtype='int64')
    v = mx.nd.array([3, 4, 5], dtype='int64')
    assert _pfc(g.get_e_repr(u, v)['l']) == [1., 1., 1.]

def test_batch_setter_autograd():
    with mx.autograd.record():
        g = generate_graph(grad=True)
        h1 = g.get_n_repr()['h']
        # partial set
        v = mx.nd.array([1, 2, 8], dtype='int64')
        hh = mx.nd.zeros((len(v), D))
        g.set_n_repr({'h' : hh}, v)
        h2 = g.get_n_repr()['h']
    h2.backward(mx.nd.ones((10, D)) * 2)
    check_eq(h1.grad[:,0], mx.nd.array([2., 0., 0., 2., 2., 2., 2., 2., 0., 2.]))
    check_eq(hh.grad[:,0], mx.nd.array([2., 2., 2.]))

def test_batch_send():
    g = generate_graph()
    def _fmsg(src, edge):
        assert src['h'].shape == (5, D)
        return {'m' : src['h']}
    g.register_message_func(_fmsg)
    # many-many send
    u = mx.nd.array([0, 0, 0, 0, 0], dtype='int64')
    v = mx.nd.array([1, 2, 3, 4, 5], dtype='int64')
    g.send(u, v)
    # one-many send
    u = mx.nd.array([0], dtype='int64')
    v = mx.nd.array([1, 2, 3, 4, 5], dtype='int64')
    g.send(u, v)
    # many-one send
    u = mx.nd.array([1, 2, 3, 4, 5], dtype='int64')
    v = mx.nd.array([9], dtype='int64')
    g.send(u, v)

def test_batch_recv():
    # basic recv test
    g = generate_graph()
    g.register_message_func(message_func)
    g.register_reduce_func(reduce_func)
    g.register_apply_node_func(apply_node_func)
    u = mx.nd.array([0, 0, 0, 4, 5, 6], dtype='int64')
    v = mx.nd.array([1, 2, 3, 9, 9, 9], dtype='int64')
    reduce_msg_shapes.clear()
    g.send(u, v)
    #g.recv(th.unique(v))
    #assert(reduce_msg_shapes == {(1, 3, D), (3, 1, D)})
    #reduce_msg_shapes.clear()

def test_update_routines():
    g = generate_graph()
    g.register_message_func(message_func)
    g.register_reduce_func(reduce_func)
    g.register_apply_node_func(apply_node_func)

    # send_and_recv
    reduce_msg_shapes.clear()
    u = mx.nd.array([0, 0, 0, 4, 5, 6], dtype='int64')
    v = mx.nd.array([1, 2, 3, 9, 9, 9], dtype='int64')
    g.send_and_recv(u, v)
    assert(reduce_msg_shapes == {(1, 3, D), (3, 1, D)})
    reduce_msg_shapes.clear()

    # pull
    v = mx.nd.array([1, 2, 3, 9], dtype='int64')
    reduce_msg_shapes.clear()
    g.pull(v)
    assert(reduce_msg_shapes == {(1, 8, D), (3, 1, D)})
    reduce_msg_shapes.clear()

    # push
    v = mx.nd.array([0, 1, 2, 3], dtype='int64')
    reduce_msg_shapes.clear()
    g.push(v)
    assert(reduce_msg_shapes == {(1, 3, D), (8, 1, D)})
    reduce_msg_shapes.clear()

    # update_all
    reduce_msg_shapes.clear()
    g.update_all()
    assert(reduce_msg_shapes == {(1, 8, D), (9, 1, D)})
    reduce_msg_shapes.clear()

def test_reduce_0deg():
    g = DGLGraph()
    g.add_nodes(5)
    g.add_edge(1, 0)
    g.add_edge(2, 0)
    g.add_edge(3, 0)
    g.add_edge(4, 0)
    def _message(src, edge):
        return src
    def _reduce(node, msgs):
        assert msgs is not None
        return node + msgs.sum(1)
    old_repr = mx.nd.random.normal(shape=(5, 5))
    g.set_n_repr(old_repr)
    g.update_all(_message, _reduce)
    new_repr = g.get_n_repr()

    assert np.allclose(new_repr[1:].asnumpy(), old_repr[1:].asnumpy())
    assert np.allclose(new_repr[0].asnumpy(), old_repr.sum(0).asnumpy())

def test_pull_0deg():
    g = DGLGraph()
    g.add_nodes(2)
    g.add_edge(0, 1)
    def _message(src, edge):
        return src
    def _reduce(node, msgs):
        assert msgs is not None
        return msgs.sum(1)

    old_repr = mx.nd.random.normal(shape=(2, 5))
    g.set_n_repr(old_repr)
    g.pull(0, _message, _reduce)
    new_repr = g.get_n_repr()
    assert np.allclose(new_repr[0].asnumpy(), old_repr[0].asnumpy())
    assert np.allclose(new_repr[1].asnumpy(), old_repr[1].asnumpy())
    g.pull(1, _message, _reduce)
    new_repr = g.get_n_repr()
    assert np.allclose(new_repr[1].asnumpy(), old_repr[0].asnumpy())

    old_repr = mx.nd.random.normal(shape=(2, 5))
    g.set_n_repr(old_repr)
    g.pull([0, 1], _message, _reduce)
    new_repr = g.get_n_repr()
    assert np.allclose(new_repr[0].asnumpy(), old_repr[0].asnumpy())
    assert np.allclose(new_repr[1].asnumpy(), old_repr[0].asnumpy())

if __name__ == '__main__':
    test_batch_setter_getter()
    # TODO we need to enable it after index_copy is implemented.
    #test_batch_setter_autograd()
    test_batch_send()
    test_batch_recv()
    test_update_routines()
    test_reduce_0deg()
    test_pull_0deg()