gcn_builtin.py 7.17 KB
Newer Older
VoVAllen's avatar
VoVAllen committed
1
2
3
4
5
6
7
import argparse
import time
import math
import numpy as np
import networkx as nx
import tensorflow as tf
import dgl.function as fn
8
9
10
import dgl
from dgl.data import register_data_args
from dgl.data import CoraGraphDataset, CiteseerGraphDataset, PubmedGraphDataset
VoVAllen's avatar
VoVAllen committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from tensorflow.keras import layers


class GCNLayer(layers.Layer):
    def __init__(self,
                 g,
                 in_feats,
                 out_feats,
                 activation,
                 dropout,
                 bias=True):
        super(GCNLayer, self).__init__()
        self.g = g

25
26
        w_init = tf.keras.initializers.VarianceScaling(
            scale=1.0, mode="fan_out", distribution="uniform")
VoVAllen's avatar
VoVAllen committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
        self.weight = tf.Variable(initial_value=w_init(shape=(in_feats, out_feats),
                                                       dtype='float32'),
                                  trainable=True)
        if dropout:
            self.dropout = layers.Dropout(rate=dropout)
        else:
            self.dropout = 0.
        if bias:
            b_init = tf.zeros_initializer()
            self.bias = tf.Variable(initial_value=b_init(shape=(out_feats,),
                                                         dtype='float32'),
                                    trainable=True)
        else:
            self.bias = None
        self.activation = activation

    def call(self, h):
        if self.dropout:
            h = self.dropout(h)
        self.g.ndata['h'] = tf.matmul(h, self.weight)
        self.g.ndata['norm_h'] = self.g.ndata['h'] * self.g.ndata['norm']
48
        self.g.update_all(fn.copy_u('norm_h', 'm'),
VoVAllen's avatar
VoVAllen committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
                          fn.sum('m', 'h'))
        h = self.g.ndata['h']
        if self.bias is not None:
            h = h + self.bias
        if self.activation:
            h = self.activation(h)
        return h


class GCN(layers.Layer):
    def __init__(self,
                 g,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout):
        super(GCN, self).__init__()
        self.layers = []

        # input layer
        self.layers.append(
            GCNLayer(g, in_feats, n_hidden, activation, dropout))
        # hidden layers
        for i in range(n_layers - 1):
            self.layers.append(
                GCNLayer(g, n_hidden, n_hidden, activation, dropout))
        # output layer
        self.layers.append(GCNLayer(g, n_hidden, n_classes, None, dropout))

    def call(self, features):
        h = features
        for layer in self.layers:
            h = layer(h)
        return h


def evaluate(model, features, labels, mask):
    logits = model(features, training=False)
    logits = logits[mask]
    labels = labels[mask]
    indices = tf.math.argmax(logits, axis=1)
    acc = tf.reduce_mean(tf.cast(indices == labels, dtype=tf.float32))
    return acc.numpy().item()


def main(args):
    # load and preprocess dataset
98
99
100
101
102
103
104
105
    if args.dataset == 'cora':
        data = CoraGraphDataset()
    elif args.dataset == 'citeseer':
        data = CiteseerGraphDataset()
    elif args.dataset == 'pubmed':
        data = PubmedGraphDataset()
    else:
        raise ValueError('Unknown dataset: {}'.format(args.dataset))
VoVAllen's avatar
VoVAllen committed
106

107
    g = data[0]
VoVAllen's avatar
VoVAllen committed
108
109
110
111
    if args.gpu < 0:
        device = "/cpu:0"
    else:
        device = "/gpu:{}".format(args.gpu)
112
        g = g.to(device)
VoVAllen's avatar
VoVAllen committed
113
114

    with tf.device(device):
115
116
117
118
119
        features = g.ndata['feat']
        labels = g.ndata['label']
        train_mask = g.ndata['train_mask']
        val_mask = g.ndata['val_mask']
        test_mask = g.ndata['test_mask']
VoVAllen's avatar
VoVAllen committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        in_feats = features.shape[1]
        n_classes = data.num_labels
        n_edges = data.graph.number_of_edges()
        print("""----Data statistics------'
        #Edges %d
        #Classes %d
        #Train samples %d
        #Val samples %d
        #Test samples %d""" %
              (n_edges, n_classes,
               train_mask.numpy().sum(),
               val_mask.numpy().sum(),
               test_mask.numpy().sum()))

134
135
136
        # add self loop
        g = dgl.remove_self_loop(g)
        g = dgl.add_self_loop(g)
VoVAllen's avatar
VoVAllen committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
        n_edges = g.number_of_edges()
        # # normalization
        degs = tf.cast(tf.identity(g.in_degrees()), dtype=tf.float32)
        norm = tf.math.pow(degs, -0.5)
        norm = tf.where(tf.math.is_inf(norm), tf.zeros_like(norm), norm)

        g.ndata['norm'] = tf.expand_dims(norm, -1)

        # create GCN model
        model = GCN(g,
                    in_feats,
                    args.n_hidden,
                    n_classes,
                    args.n_layers,
                    tf.nn.relu,
                    args.dropout)

        optimizer = tf.keras.optimizers.Adam(
155
            learning_rate=args.lr)
VoVAllen's avatar
VoVAllen committed
156
157
158
159
160
161
162
163
164
165
166
167

        loss_fcn = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=True)
        # initialize graph
        dur = []
        for epoch in range(args.n_epochs):
            if epoch >= 3:
                t0 = time.time()
            # forward
            with tf.GradientTape() as tape:
                logits = model(features)
                loss_value = loss_fcn(labels[train_mask], logits[train_mask])
168
                # Manually Weight Decay
169
                # We found Tensorflow has a different implementation on weight decay
170
171
172
173
174
                # of Adam(W) optimizer with PyTorch. And this results in worse results.
                # Manually adding weights to the loss to do weight decay solves this problem.
                for weight in model.trainable_weights:
                    loss_value = loss_value + \
                        args.weight_decay*tf.nn.l2_loss(weight)
VoVAllen's avatar
VoVAllen committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

                grads = tape.gradient(loss_value, model.trainable_weights)
                optimizer.apply_gradients(zip(grads, model.trainable_weights))

            if epoch >= 3:
                dur.append(time.time() - t0)

            acc = evaluate(model, features, labels, val_mask)
            print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
                  "ETputs(KTEPS) {:.2f}". format(epoch, np.mean(dur), loss_value.numpy().item(),
                                                 acc, n_edges / np.mean(dur) / 1000))

        acc = evaluate(model, features, labels, test_mask)
        print("Test Accuracy {:.4f}".format(acc))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN')
    register_data_args(parser)
    parser.add_argument("--dropout", type=float, default=0.5,
                        help="dropout probability")
    parser.add_argument("--gpu", type=int, default=-1,
                        help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
                        help="learning rate")
    parser.add_argument("--n-epochs", type=int, default=200,
                        help="number of training epochs")
    parser.add_argument("--n-hidden", type=int, default=16,
                        help="number of hidden gcn units")
    parser.add_argument("--n-layers", type=int, default=1,
                        help="number of hidden gcn layers")
    parser.add_argument("--weight-decay", type=float, default=5e-4,
                        help="Weight for L2 loss")
    args = parser.parse_args()
    print(args)

    main(args)