act.py 8.73 KB
Newer Older
Zihao Ye's avatar
Zihao Ye committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from .attention import *
from .layers import *
from .functions import *
from .embedding import *
import torch as th
import dgl.function as fn
import torch.nn.init as INIT

class UEncoder(nn.Module):
    def __init__(self, layer):
        super(UEncoder, self).__init__()
        self.layer = layer
        self.norm = LayerNorm(layer.size)

    def pre_func(self, fields='qkv'):
        layer = self.layer
        def func(nodes):
            x = nodes.data['x']
            norm_x = layer.sublayer[0].norm(x)
            return layer.self_attn.get(norm_x, fields=fields)
        return func

    def post_func(self):
        layer = self.layer
        def func(nodes):
            x, wv, z = nodes.data['x'], nodes.data['wv'], nodes.data['z']
            o = layer.self_attn.get_o(wv / z)
            x = x + layer.sublayer[0].dropout(o)
            x = layer.sublayer[1](x, layer.feed_forward)
            return {'x': x}
        return func


class UDecoder(nn.Module):
    def __init__(self, layer):
        super(UDecoder, self).__init__()
        self.layer = layer
        self.norm = LayerNorm(layer.size)

    def pre_func(self, fields='qkv', l=0):
        layer = self.layer
        def func(nodes):
            x = nodes.data['x']
            if fields == 'kv':
                norm_x = x
            else:
                norm_x = layer.sublayer[l].norm(x)
            return layer.self_attn.get(norm_x, fields)
        return func

    def post_func(self, l=0):
        layer = self.layer
        def func(nodes):
            x, wv, z = nodes.data['x'], nodes.data['wv'], nodes.data['z']
            o = layer.self_attn.get_o(wv / z)
            x = x + layer.sublayer[l].dropout(o)
            if l == 1:
                x = layer.sublayer[2](x, layer.feed_forward)
            return {'x': x}
        return func


class HaltingUnit(nn.Module):
    halting_bias_init = 1.0
    def __init__(self, dim_model):
        super(HaltingUnit, self).__init__()
        self.linear = nn.Linear(dim_model, 1)
        self.norm = LayerNorm(dim_model)
        INIT.constant_(self.linear.bias, self.halting_bias_init)

    def forward(self, x):
        return th.sigmoid(self.linear(self.norm(x)))

class UTransformer(nn.Module):
    "Universal Transformer(https://arxiv.org/pdf/1807.03819.pdf) with ACT(https://arxiv.org/pdf/1603.08983.pdf)."
    MAX_DEPTH = 8
    thres = 0.99
    act_loss_weight = 0.01 
    def __init__(self, encoder, decoder, src_embed, tgt_embed, pos_enc, time_enc, generator, h, d_k):
        super(UTransformer, self).__init__()
        self.encoder,  self.decoder = encoder, decoder
        self.src_embed, self.tgt_embed = src_embed, tgt_embed
        self.pos_enc, self.time_enc = pos_enc, time_enc
        self.halt_enc = HaltingUnit(h * d_k)
        self.halt_dec = HaltingUnit(h * d_k)
        self.generator = generator
        self.h, self.d_k = h, d_k
        self.reset_stat()

    def reset_stat(self):
        self.stat = [0] * (self.MAX_DEPTH + 1)

    def step_forward(self, nodes):
        x = nodes.data['x']
        step = nodes.data['step']
        pos = nodes.data['pos']
        return {'x': self.pos_enc.dropout(x + self.pos_enc(pos.view(-1)) + self.time_enc(step.view(-1))),
                'step': step + 1}

    def halt_and_accum(self, name, end=False):
        "field: 'enc' or 'dec'"
        halt = self.halt_enc if name == 'enc' else self.halt_dec
        thres = self.thres
        def func(nodes):
            p = halt(nodes.data['x'])
            sum_p = nodes.data['sum_p'] + p
            active = (sum_p < thres) & (1 - end)
            _continue = active.float()
            r = nodes.data['r'] * (1 - _continue) + (1 - sum_p) * _continue
            s = nodes.data['s'] + ((1 - _continue) * r + _continue * p) * nodes.data['x']
            return {'p': p, 'sum_p': sum_p, 'r': r, 's': s, 'active': active}
        return func

    def propagate_attention(self, g, eids):
        # Compute attention score
        g.apply_edges(src_dot_dst('k', 'q', 'score'), eids)
        g.apply_edges(scaled_exp('score', np.sqrt(self.d_k)), eids)
        # Send weighted values to target nodes
        g.send_and_recv(eids,
120
                        [fn.u_mul_e('v', 'score', 'v'), fn.copy_e('score', 'score')],
Zihao Ye's avatar
Zihao Ye committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
                        [fn.sum('v', 'wv'), fn.sum('score', 'z')])

    def update_graph(self, g, eids, pre_pairs, post_pairs):
        "Update the node states and edge states of the graph."
        # Pre-compute queries and key-value pairs.
        for pre_func, nids in pre_pairs:
            g.apply_nodes(pre_func, nids)
        self.propagate_attention(g, eids)
        # Further calculation after attention mechanism
        for post_func, nids in post_pairs:
            g.apply_nodes(post_func, nids)

    def forward(self, graph):
        g = graph.g
        N, E = graph.n_nodes, graph.n_edges
        nids, eids = graph.nids, graph.eids

        # embed & pos
        g.nodes[nids['enc']].data['x'] = self.src_embed(graph.src[0])
        g.nodes[nids['dec']].data['x'] = self.tgt_embed(graph.tgt[0])
        g.nodes[nids['enc']].data['pos'] = graph.src[1]
        g.nodes[nids['dec']].data['pos'] = graph.tgt[1]

        # init step
        device = next(self.parameters()).device
        g.ndata['s'] = th.zeros(N, self.h * self.d_k, dtype=th.float, device=device)    # accumulated state
        g.ndata['p'] = th.zeros(N, 1, dtype=th.float, device=device)                    # halting prob 
        g.ndata['r'] = th.ones(N, 1, dtype=th.float, device=device)                     # remainder
        g.ndata['sum_p'] = th.zeros(N, 1, dtype=th.float, device=device)                # sum of pondering values
        g.ndata['step'] = th.zeros(N, 1, dtype=th.long, device=device)                  # step
        g.ndata['active'] = th.ones(N, 1, dtype=th.uint8, device=device)                # active

        for step in range(self.MAX_DEPTH):
            pre_func = self.encoder.pre_func('qkv')
            post_func = self.encoder.post_func()
            nodes = g.filter_nodes(lambda v: v.data['active'].view(-1), nids['enc'])
            if len(nodes) == 0: break
            edges = g.filter_edges(lambda e: e.dst['active'].view(-1), eids['ee'])
            end = step == self.MAX_DEPTH - 1
            self.update_graph(g, edges,
                              [(self.step_forward, nodes), (pre_func, nodes)],
                              [(post_func, nodes), (self.halt_and_accum('enc', end), nodes)])

        g.nodes[nids['enc']].data['x'] = self.encoder.norm(g.nodes[nids['enc']].data['s'])

        for step in range(self.MAX_DEPTH):
            pre_func = self.decoder.pre_func('qkv')
            post_func = self.decoder.post_func()
            nodes = g.filter_nodes(lambda v: v.data['active'].view(-1), nids['dec'])
            if len(nodes) == 0: break
            edges = g.filter_edges(lambda e: e.dst['active'].view(-1), eids['dd'])
            self.update_graph(g, edges,
                              [(self.step_forward, nodes), (pre_func, nodes)],
                              [(post_func, nodes)])

            pre_q = self.decoder.pre_func('q', 1)
            pre_kv = self.decoder.pre_func('kv', 1)
            post_func = self.decoder.post_func(1)
            nodes_e = nids['enc']
            edges = g.filter_edges(lambda e: e.dst['active'].view(-1), eids['ed'])
            end = step == self.MAX_DEPTH - 1
            self.update_graph(g, edges,
                              [(pre_q, nodes), (pre_kv, nodes_e)],
                              [(post_func, nodes), (self.halt_and_accum('dec', end), nodes)])

        g.nodes[nids['dec']].data['x'] = self.decoder.norm(g.nodes[nids['dec']].data['s'])
        act_loss = th.mean(g.ndata['r']) # ACT loss

        self.stat[0] += N
        for step in range(1, self.MAX_DEPTH + 1):
            self.stat[step] += th.sum(g.ndata['step'] >= step).item()

        return self.generator(g.ndata['x'][nids['dec']]), act_loss * self.act_loss_weight

    def infer(self, *args, **kwargs):
        raise NotImplementedError


def make_universal_model(src_vocab, tgt_vocab, dim_model=512, dim_ff=2048, h=8, dropout=0.1):
    c = copy.deepcopy
    attn = MultiHeadAttention(h, dim_model)
    ff = PositionwiseFeedForward(dim_model, dim_ff)
    pos_enc = PositionalEncoding(dim_model, dropout)
    time_enc = PositionalEncoding(dim_model, dropout)
    encoder = UEncoder(EncoderLayer((dim_model), c(attn), c(ff), dropout))
    decoder = UDecoder(DecoderLayer((dim_model), c(attn), c(attn), c(ff), dropout))
    src_embed = Embeddings(src_vocab, dim_model)
    tgt_embed = Embeddings(tgt_vocab, dim_model)
    generator = Generator(dim_model, tgt_vocab)
    model = UTransformer(
        encoder, decoder, src_embed, tgt_embed, pos_enc, time_enc, generator, h, dim_model // h)
    # xavier init
    for p in model.parameters():
        if p.dim() > 1:
            INIT.xavier_uniform_(p)
    return model