reading_data.py 4.79 KB
Newer Older
ziqiaomeng's avatar
ziqiaomeng committed
1
2
3
4
5
6
7
8
9
import numpy as np
import torch
from torch.utils.data import Dataset
from download import AminerDataset
np.random.seed(12345)

class DataReader:
    NEGATIVE_TABLE_SIZE = 1e8

10
    def __init__(self, dataset, min_count, care_type):
ziqiaomeng's avatar
ziqiaomeng committed
11
12
13
14
15
16
17
18
19
20

        self.negatives = []
        self.discards = []
        self.negpos = 0
        self.care_type = care_type
        self.word2id = dict()
        self.id2word = dict()
        self.sentences_count = 0
        self.token_count = 0
        self.word_frequency = dict()
21
        self.inputFileName = dataset.fn
ziqiaomeng's avatar
ziqiaomeng committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        self.read_words(min_count)
        self.initTableNegatives()
        self.initTableDiscards()

    def read_words(self, min_count):
        word_frequency = dict()
        for line in open(self.inputFileName, encoding="ISO-8859-1"):
            line = line.split()
            if len(line) > 1:
                self.sentences_count += 1
                for word in line:
                    if len(word) > 0:
                        self.token_count += 1
                        word_frequency[word] = word_frequency.get(word, 0) + 1

                        if self.token_count % 1000000 == 0:
                            print("Read " + str(int(self.token_count / 1000000)) + "M words.")

        wid = 0
        for w, c in word_frequency.items():
            if c < min_count:
                continue
            self.word2id[w] = wid
            self.id2word[wid] = w
            self.word_frequency[wid] = c
            wid += 1

        self.word_count = len(self.word2id)
        print("Total embeddings: " + str(len(self.word2id)))

    def initTableDiscards(self):
        # get a frequency table for sub-sampling. Note that the frequency is adjusted by
        # sub-sampling tricks.
        t = 0.0001
        f = np.array(list(self.word_frequency.values())) / self.token_count
        self.discards = np.sqrt(t / f) + (t / f)

    def initTableNegatives(self):
        # get a table for negative sampling, if word with index 2 appears twice, then 2 will be listed
        # in the table twice.
        pow_frequency = np.array(list(self.word_frequency.values())) ** 0.75
        words_pow = sum(pow_frequency)
        ratio = pow_frequency / words_pow
        count = np.round(ratio * DataReader.NEGATIVE_TABLE_SIZE)
        for wid, c in enumerate(count):
            self.negatives += [wid] * int(c)
        self.negatives = np.array(self.negatives)
        np.random.shuffle(self.negatives)
        self.sampling_prob = ratio

    def getNegatives(self, target, size):  # TODO check equality with target
        if self.care_type == 0:
            response = self.negatives[self.negpos:self.negpos + size]
            self.negpos = (self.negpos + size) % len(self.negatives)
            if len(response) != size:
                return np.concatenate((response, self.negatives[0:self.negpos]))
        return response


# -----------------------------------------------------------------------------------------------------------------

class Metapath2vecDataset(Dataset):
    def __init__(self, data, window_size):
        # read in data, window_size and input filename
        self.data = data
        self.window_size = window_size
        self.input_file = open(data.inputFileName, encoding="ISO-8859-1")

    def __len__(self):
        # return the number of walks
        return self.data.sentences_count

    def __getitem__(self, idx):
        # return the list of pairs (center, context, 5 negatives)
        while True:
            line = self.input_file.readline()
            if not line:
                self.input_file.seek(0, 0)
                line = self.input_file.readline()

            if len(line) > 1:
                words = line.split()

                if len(words) > 1:
                    word_ids = [self.data.word2id[w] for w in words if
                                w in self.data.word2id and np.random.rand() < self.data.discards[self.data.word2id[w]]]

                    pair_catch = []
                    for i, u in enumerate(word_ids):
                        for j, v in enumerate(
                                word_ids[max(i - self.window_size, 0):i + self.window_size]):
                            assert u < self.data.word_count
                            assert v < self.data.word_count
                            if i == j:
                                continue
                            pair_catch.append((u, v, self.data.getNegatives(v,5)))
                    return pair_catch


    @staticmethod
    def collate(batches):
        all_u = [u for batch in batches for u, _, _ in batch if len(batch) > 0]
        all_v = [v for batch in batches for _, v, _ in batch if len(batch) > 0]
        all_neg_v = [neg_v for batch in batches for _, _, neg_v in batch if len(batch) > 0]

        return torch.LongTensor(all_u), torch.LongTensor(all_v), torch.LongTensor(all_neg_v)