utils.py 8.54 KB
Newer Older
Mufei Li's avatar
Mufei Li committed
1
2
3
4
5
6
import datetime
import errno
import os
import pickle
import random
from pprint import pprint
7
8
9

import numpy as np
import torch
Mufei Li's avatar
Mufei Li committed
10
from scipy import io as sio
11
12
13
14
15
from scipy import sparse

import dgl
from dgl.data.utils import _get_dgl_url, download, get_download_dir

Mufei Li's avatar
Mufei Li committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29

def set_random_seed(seed=0):
    """Set random seed.
    Parameters
    ----------
    seed : int
        Random seed to use
    """
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)

30

Mufei Li's avatar
Mufei Li committed
31
32
33
34
35
36
37
38
39
40
41
42
def mkdir_p(path, log=True):
    """Create a directory for the specified path.
    Parameters
    ----------
    path : str
        Path name
    log : bool
        Whether to print result for directory creation
    """
    try:
        os.makedirs(path)
        if log:
43
            print("Created directory {}".format(path))
Mufei Li's avatar
Mufei Li committed
44
45
    except OSError as exc:
        if exc.errno == errno.EEXIST and os.path.isdir(path) and log:
46
            print("Directory {} already exists.".format(path))
Mufei Li's avatar
Mufei Li committed
47
48
49
        else:
            raise

50

Mufei Li's avatar
Mufei Li committed
51
52
53
54
55
56
57
def get_date_postfix():
    """Get a date based postfix for directory name.
    Returns
    -------
    post_fix : str
    """
    dt = datetime.datetime.now()
58
59
60
    post_fix = "{}_{:02d}-{:02d}-{:02d}".format(
        dt.date(), dt.hour, dt.minute, dt.second
    )
Mufei Li's avatar
Mufei Li committed
61
62
63

    return post_fix

64

Mufei Li's avatar
Mufei Li committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
def setup_log_dir(args, sampling=False):
    """Name and create directory for logging.
    Parameters
    ----------
    args : dict
        Configuration
    Returns
    -------
    log_dir : str
        Path for logging directory
    sampling : bool
        Whether we are using sampling based training
    """
    date_postfix = get_date_postfix()
    log_dir = os.path.join(
80
81
        args["log_dir"], "{}_{}".format(args["dataset"], date_postfix)
    )
Mufei Li's avatar
Mufei Li committed
82
83

    if sampling:
84
        log_dir = log_dir + "_sampling"
Mufei Li's avatar
Mufei Li committed
85
86
87
88

    mkdir_p(log_dir)
    return log_dir

89

Mufei Li's avatar
Mufei Li committed
90
91
# The configuration below is from the paper.
default_configure = {
92
93
94
95
96
97
98
    "lr": 0.005,  # Learning rate
    "num_heads": [8],  # Number of attention heads for node-level attention
    "hidden_units": 8,
    "dropout": 0.6,
    "weight_decay": 0.001,
    "num_epochs": 200,
    "patience": 100,
Mufei Li's avatar
Mufei Li committed
99
100
}

101
102
sampling_configure = {"batch_size": 20}

Mufei Li's avatar
Mufei Li committed
103
104
105

def setup(args):
    args.update(default_configure)
106
107
108
109
    set_random_seed(args["seed"])
    args["dataset"] = "ACMRaw" if args["hetero"] else "ACM"
    args["device"] = "cuda:0" if torch.cuda.is_available() else "cpu"
    args["log_dir"] = setup_log_dir(args)
Mufei Li's avatar
Mufei Li committed
110
111
    return args

112

Mufei Li's avatar
Mufei Li committed
113
114
115
116
def setup_for_sampling(args):
    args.update(default_configure)
    args.update(sampling_configure)
    set_random_seed()
117
118
    args["device"] = "cuda:0" if torch.cuda.is_available() else "cpu"
    args["log_dir"] = setup_log_dir(args, sampling=True)
Mufei Li's avatar
Mufei Li committed
119
120
    return args

121

Mufei Li's avatar
Mufei Li committed
122
123
124
125
126
def get_binary_mask(total_size, indices):
    mask = torch.zeros(total_size)
    mask[indices] = 1
    return mask.byte()

127

Mufei Li's avatar
Mufei Li committed
128
def load_acm(remove_self_loop):
129
130
    url = "dataset/ACM3025.pkl"
    data_path = get_download_dir() + "/ACM3025.pkl"
Mufei Li's avatar
Mufei Li committed
131
132
    download(_get_dgl_url(url), path=data_path)

133
    with open(data_path, "rb") as f:
Mufei Li's avatar
Mufei Li committed
134
135
        data = pickle.load(f)

136
137
138
139
    labels, features = (
        torch.from_numpy(data["label"].todense()).long(),
        torch.from_numpy(data["feature"].todense()).float(),
    )
Mufei Li's avatar
Mufei Li committed
140
141
142
143
    num_classes = labels.shape[1]
    labels = labels.nonzero()[:, 1]

    if remove_self_loop:
144
145
146
        num_nodes = data["label"].shape[0]
        data["PAP"] = sparse.csr_matrix(data["PAP"] - np.eye(num_nodes))
        data["PLP"] = sparse.csr_matrix(data["PLP"] - np.eye(num_nodes))
Mufei Li's avatar
Mufei Li committed
147
148
149

    # Adjacency matrices for meta path based neighbors
    # (Mufei): I verified both of them are binary adjacency matrices with self loops
150
151
    author_g = dgl.from_scipy(data["PAP"])
    subject_g = dgl.from_scipy(data["PLP"])
Mufei Li's avatar
Mufei Li committed
152
153
    gs = [author_g, subject_g]

154
155
156
    train_idx = torch.from_numpy(data["train_idx"]).long().squeeze(0)
    val_idx = torch.from_numpy(data["val_idx"]).long().squeeze(0)
    test_idx = torch.from_numpy(data["test_idx"]).long().squeeze(0)
Mufei Li's avatar
Mufei Li committed
157
158
159
160
161
162

    num_nodes = author_g.number_of_nodes()
    train_mask = get_binary_mask(num_nodes, train_idx)
    val_mask = get_binary_mask(num_nodes, val_idx)
    test_mask = get_binary_mask(num_nodes, test_idx)

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    print("dataset loaded")
    pprint(
        {
            "dataset": "ACM",
            "train": train_mask.sum().item() / num_nodes,
            "val": val_mask.sum().item() / num_nodes,
            "test": test_mask.sum().item() / num_nodes,
        }
    )

    return (
        gs,
        features,
        labels,
        num_classes,
        train_idx,
        val_idx,
        test_idx,
        train_mask,
        val_mask,
        test_mask,
    )
Mufei Li's avatar
Mufei Li committed
185
186
187
188


def load_acm_raw(remove_self_loop):
    assert not remove_self_loop
189
190
    url = "dataset/ACM.mat"
    data_path = get_download_dir() + "/ACM.mat"
Mufei Li's avatar
Mufei Li committed
191
192
193
    download(_get_dgl_url(url), path=data_path)

    data = sio.loadmat(data_path)
194
195
196
197
    p_vs_l = data["PvsL"]  # paper-field?
    p_vs_a = data["PvsA"]  # paper-author
    p_vs_t = data["PvsT"]  # paper-term, bag of words
    p_vs_c = data["PvsC"]  # paper-conference, labels come from that
Mufei Li's avatar
Mufei Li committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

    # We assign
    # (1) KDD papers as class 0 (data mining),
    # (2) SIGMOD and VLDB papers as class 1 (database),
    # (3) SIGCOMM and MOBICOMM papers as class 2 (communication)
    conf_ids = [0, 1, 9, 10, 13]
    label_ids = [0, 1, 2, 2, 1]

    p_vs_c_filter = p_vs_c[:, conf_ids]
    p_selected = (p_vs_c_filter.sum(1) != 0).A1.nonzero()[0]
    p_vs_l = p_vs_l[p_selected]
    p_vs_a = p_vs_a[p_selected]
    p_vs_t = p_vs_t[p_selected]
    p_vs_c = p_vs_c[p_selected]

213
214
215
216
217
218
219
220
    hg = dgl.heterograph(
        {
            ("paper", "pa", "author"): p_vs_a.nonzero(),
            ("author", "ap", "paper"): p_vs_a.transpose().nonzero(),
            ("paper", "pf", "field"): p_vs_l.nonzero(),
            ("field", "fp", "paper"): p_vs_l.transpose().nonzero(),
        }
    )
Mufei Li's avatar
Mufei Li committed
221
222
223
224
225
226
227
228
229
230
231
232
233

    features = torch.FloatTensor(p_vs_t.toarray())

    pc_p, pc_c = p_vs_c.nonzero()
    labels = np.zeros(len(p_selected), dtype=np.int64)
    for conf_id, label_id in zip(conf_ids, label_ids):
        labels[pc_p[pc_c == conf_id]] = label_id
    labels = torch.LongTensor(labels)

    num_classes = 3

    float_mask = np.zeros(len(pc_p))
    for conf_id in conf_ids:
234
235
236
237
        pc_c_mask = pc_c == conf_id
        float_mask[pc_c_mask] = np.random.permutation(
            np.linspace(0, 1, pc_c_mask.sum())
        )
Mufei Li's avatar
Mufei Li committed
238
239
240
241
    train_idx = np.where(float_mask <= 0.2)[0]
    val_idx = np.where((float_mask > 0.2) & (float_mask <= 0.3))[0]
    test_idx = np.where(float_mask > 0.3)[0]

242
    num_nodes = hg.number_of_nodes("paper")
Mufei Li's avatar
Mufei Li committed
243
244
245
246
    train_mask = get_binary_mask(num_nodes, train_idx)
    val_mask = get_binary_mask(num_nodes, val_idx)
    test_mask = get_binary_mask(num_nodes, test_idx)

247
248
249
250
251
252
253
254
255
256
257
258
259
    return (
        hg,
        features,
        labels,
        num_classes,
        train_idx,
        val_idx,
        test_idx,
        train_mask,
        val_mask,
        test_mask,
    )

Mufei Li's avatar
Mufei Li committed
260
261

def load_data(dataset, remove_self_loop=False):
262
    if dataset == "ACM":
Mufei Li's avatar
Mufei Li committed
263
        return load_acm(remove_self_loop)
264
    elif dataset == "ACMRaw":
Mufei Li's avatar
Mufei Li committed
265
266
        return load_acm_raw(remove_self_loop)
    else:
267
268
        return NotImplementedError("Unsupported dataset {}".format(dataset))

Mufei Li's avatar
Mufei Li committed
269
270
271
272

class EarlyStopping(object):
    def __init__(self, patience=10):
        dt = datetime.datetime.now()
273
274
275
        self.filename = "early_stop_{}_{:02d}-{:02d}-{:02d}.pth".format(
            dt.date(), dt.hour, dt.minute, dt.second
        )
Mufei Li's avatar
Mufei Li committed
276
277
278
279
280
281
282
283
284
285
286
287
288
        self.patience = patience
        self.counter = 0
        self.best_acc = None
        self.best_loss = None
        self.early_stop = False

    def step(self, loss, acc, model):
        if self.best_loss is None:
            self.best_acc = acc
            self.best_loss = loss
            self.save_checkpoint(model)
        elif (loss > self.best_loss) and (acc < self.best_acc):
            self.counter += 1
289
290
291
            print(
                f"EarlyStopping counter: {self.counter} out of {self.patience}"
            )
Mufei Li's avatar
Mufei Li committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
            if self.counter >= self.patience:
                self.early_stop = True
        else:
            if (loss <= self.best_loss) and (acc >= self.best_acc):
                self.save_checkpoint(model)
            self.best_loss = np.min((loss, self.best_loss))
            self.best_acc = np.max((acc, self.best_acc))
            self.counter = 0
        return self.early_stop

    def save_checkpoint(self, model):
        """Saves model when validation loss decreases."""
        torch.save(model.state_dict(), self.filename)

    def load_checkpoint(self, model):
        """Load the latest checkpoint."""
        model.load_state_dict(torch.load(self.filename))