utils.py 6.8 KB
Newer Older
WangYQ's avatar
WangYQ committed
1
import argparse
2
import random
WangYQ's avatar
WangYQ committed
3
4
from datetime import datetime

5
6
7
8
9
10
import networkx as nx
import numpy as np
import torch as th

import dgl

WangYQ's avatar
WangYQ committed
11
12
13
14

def init_args():
    # TODO: change args
    argparser = argparse.ArgumentParser()
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
    argparser.add_argument("--session_interval_sec", type=int, default=1800)
    argparser.add_argument(
        "--action_data", type=str, default="data/action_head.csv"
    )
    argparser.add_argument(
        "--item_info_data", type=str, default="data/jdata_product.csv"
    )
    argparser.add_argument("--walk_length", type=int, default=10)
    argparser.add_argument("--num_walks", type=int, default=5)
    argparser.add_argument("--batch_size", type=int, default=64)
    argparser.add_argument("--dim", type=int, default=16)
    argparser.add_argument("--epochs", type=int, default=30)
    argparser.add_argument("--window_size", type=int, default=2)
    argparser.add_argument("--num_negative", type=int, default=5)
    argparser.add_argument("--lr", type=float, default=0.001)
    argparser.add_argument("--log_every", type=int, default=100)

WangYQ's avatar
WangYQ committed
32
33
34
35
    return argparser.parse_args()


def construct_graph(datapath, session_interval_gap_sec, valid_sku_raw_ids):
36
37
38
    user_clicks, sku_encoder, sku_decoder = parse_actions(
        datapath, valid_sku_raw_ids
    )
WangYQ's avatar
WangYQ committed
39
40
41
42
43
44

    # {src,dst: weight}
    graph = {}
    for user_id, action_list in user_clicks.items():
        # sort by action time
        _action_list = sorted(action_list, key=lambda x: x[1])
45
46
47
48

        last_action_time = datetime.strptime(
            _action_list[0][1], "%Y-%m-%d %H:%M:%S"
        )
WangYQ's avatar
WangYQ committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
        session = [_action_list[0][0]]
        # cut sessions and add to graph
        for sku_id, action_time in _action_list[1:]:
            action_time = datetime.strptime(action_time, "%Y-%m-%d %H:%M:%S")
            gap = action_time - last_action_time
            if gap.seconds < session_interval_gap_sec:
                session.append(sku_id)
            else:
                # here we have a new session
                # add prev session to graph
                add_session(session, graph)
                # create a new session
                session = [sku_id]
        # add last session
        add_session(session, graph)
64

WangYQ's avatar
WangYQ committed
65
66
67
68
69
70
71
72
73
74
75
76
77
    g = convert_to_dgl_graph(graph)

    return g, sku_encoder, sku_decoder


def convert_to_dgl_graph(graph):
    # directed graph
    g = nx.DiGraph()
    for edge, weight in graph.items():
        nodes = edge.split(",")
        src, dst = int(nodes[0]), int(nodes[1])
        g.add_edge(src, dst, weight=float(weight))

78
    return dgl.from_networkx(g, edge_attrs=["weight"])
WangYQ's avatar
WangYQ committed
79
80
81
82


def add_session(session, graph):
    """
83
84
85
86
87
88
    For session like:
        [sku1, sku2, sku3]
    add 1 weight to each of the following edges:
        sku1 -> sku2
        sku2 -> sku3
    If sesson length < 2, no nodes/edges will be added
WangYQ's avatar
WangYQ committed
89
    """
90
91
    for i in range(len(session) - 1):
        edge = str(session[i]) + "," + str(session[i + 1])
WangYQ's avatar
WangYQ committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        try:
            graph[edge] += 1
        except KeyError:
            graph[edge] = 1


def parse_actions(datapath, valid_sku_raw_ids):
    user_clicks = {}
    with open(datapath, "r") as f:
        f.readline()
        # raw_id -> new_id and new_id -> raw_id
        sku_encoder, sku_decoder = {}, []
        sku_id = -1
        for line in f:
            line = line.replace("\n", "")
            fields = line.split(",")
            action_type = fields[-1]
            # actually, all types in the dataset is "1"
            if action_type == "1":
                user_id = fields[0]
                sku_raw_id = fields[1]
                if sku_raw_id in valid_sku_raw_ids:
                    action_time = fields[2]
                    # encode sku_id
116
117
118
                    sku_id = encode_id(
                        sku_encoder, sku_decoder, sku_raw_id, sku_id
                    )
WangYQ's avatar
WangYQ committed
119
120
121
122
123
124

                    # add to user clicks
                    try:
                        user_clicks[user_id].append((sku_id, action_time))
                    except KeyError:
                        user_clicks[user_id] = [(sku_id, action_time)]
125

WangYQ's avatar
WangYQ committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    return user_clicks, sku_encoder, sku_decoder


def encode_id(encoder, decoder, raw_id, encoded_id):
    if raw_id in encoder:
        return encoded_id
    else:
        encoded_id += 1
        encoder[raw_id] = encoded_id
        decoder.append(raw_id)

    return encoded_id


def get_valid_sku_set(datapath):
    sku_ids = set()
    with open(datapath, "r") as f:
        for line in f.readlines():
            line.replace("\n", "")
            sku_raw_id = line.split(",")[0]
            sku_ids.add(sku_raw_id)
147

WangYQ's avatar
WangYQ committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    return sku_ids


def encode_sku_fields(datapath, sku_encoder, sku_decoder):
    # sku_id,brand,shop_id,cate,market_time
    sku_info_encoder = {"brand": {}, "shop": {}, "cate": {}}
    sku_info_decoder = {"brand": [], "shop": [], "cate": []}
    sku_info = {}
    brand_id, shop_id, cate_id = -1, -1, -1
    with open(datapath, "r") as f:
        f.readline()
        for line in f:
            line = line.replace("\n", "")
            fields = line.split(",")
            sku_raw_id = fields[0]

            brand_raw_id = fields[1]
            shop_raw_id = fields[2]
            cate_raw_id = fields[3]

            if sku_raw_id in sku_encoder:
                sku_id = sku_encoder[sku_raw_id]
170

WangYQ's avatar
WangYQ committed
171
                brand_id = encode_id(
172
173
174
175
176
                    sku_info_encoder["brand"],
                    sku_info_decoder["brand"],
                    brand_raw_id,
                    brand_id,
                )
WangYQ's avatar
WangYQ committed
177
178

                shop_id = encode_id(
179
180
181
182
183
                    sku_info_encoder["shop"],
                    sku_info_decoder["shop"],
                    shop_raw_id,
                    shop_id,
                )
WangYQ's avatar
WangYQ committed
184
185

                cate_id = encode_id(
186
187
188
189
190
                    sku_info_encoder["cate"],
                    sku_info_decoder["cate"],
                    cate_raw_id,
                    cate_id,
                )
WangYQ's avatar
WangYQ committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

                sku_info[sku_id] = [sku_id, brand_id, shop_id, cate_id]

    return sku_info_encoder, sku_info_decoder, sku_info


class TestEdge:
    def __init__(self, src, dst, label):
        self.src = src
        self.dst = dst
        self.label = label


def split_train_test_graph(graph):
    """
206
207
208
    For test true edges, 1/3 of the edges are randomly chosen
    and removed as ground truth in the test set,
    the remaining graph is taken as the training set.
WangYQ's avatar
WangYQ committed
209
210
211
    """
    test_edges = []
    neg_sampler = dgl.dataloading.negative_sampler.Uniform(1)
212
213
214
    sampled_edge_ids = random.sample(
        range(graph.num_edges()), int(graph.num_edges() / 3)
    )
WangYQ's avatar
WangYQ committed
215
216
217
218
219
220
    for edge_id in sampled_edge_ids:
        src, dst = graph.find_edges(edge_id)
        test_edges.append(TestEdge(src, dst, 1))

        src, dst = neg_sampler(graph, th.tensor([edge_id]))
        test_edges.append(TestEdge(src, dst, 0))
221

WangYQ's avatar
WangYQ committed
222
223
224
225
    graph.remove_edges(sampled_edge_ids)
    test_graph = test_edges

    return graph, test_graph