"vscode:/vscode.git/clone" did not exist on "39852f092c650660a585a2ccabedb8eeed1f45d6"
relation.py 5.28 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
"""Pascal VOC object detection dataset."""
from __future__ import absolute_import
from __future__ import division
import os
import logging
import warnings
import json
import dgl
import pickle
import numpy as np
import mxnet as mx
from gluoncv.data.base import VisionDataset
from collections import Counter
from gluoncv.data.transforms.presets.rcnn import FasterRCNNDefaultTrainTransform, FasterRCNNDefaultValTransform

class VGRelation(VisionDataset):
    def __init__(self, root=os.path.join('~', '.mxnet', 'datasets', 'visualgenome'), split='train'):
        super(VGRelation, self).__init__(root)
        self._root = os.path.expanduser(root)
        self._img_path = os.path.join(self._root, 'VG_100K', '{}')

        if split == 'train':
            self._dict_path = os.path.join(self._root, 'rel_annotations_train.json')
        elif split == 'val':
            self._dict_path = os.path.join(self._root, 'rel_annotations_val.json')
        else:
            raise NotImplementedError
        with open(self._dict_path) as f:
            tmp = f.read()
            self._dict = json.loads(tmp)

        self._predicates_path = os.path.join(self._root, 'predicates.json')
        with open(self._predicates_path, 'r') as f:
            tmp = f.read()
            self.rel_classes = json.loads(tmp)
        self.num_rel_classes = len(self.rel_classes) + 1

        self._objects_path = os.path.join(self._root, 'objects.json')
        with open(self._objects_path, 'r') as f:
            tmp = f.read()
            self.obj_classes = json.loads(tmp)
        self.num_obj_classes = len(self.obj_classes)

        if split == 'val':
            self.img_transform = FasterRCNNDefaultValTransform(short=600, max_size=1000)
        else:
            self.img_transform = FasterRCNNDefaultTrainTransform(short=600, max_size=1000)
        self.split = split

    def __len__(self):
        return len(self._dict)

    def _hash_bbox(self, object):
        num_list = [object['category']] + object['bbox']
        return '_'.join([str(num) for num in num_list])

    def __getitem__(self, idx):
        img_id = list(self._dict)[idx]
        img_path = self._img_path.format(img_id)
        img = mx.image.imread(img_path)

        item = self._dict[img_id]
        n_edges = len(item)

        # edge to node ids
        sub_node_hash = []
        ob_node_hash = []
        for i, it in enumerate(item):
            sub_node_hash.append(self._hash_bbox(it['subject']))
            ob_node_hash.append(self._hash_bbox(it['object']))
        node_set = sorted(list(set(sub_node_hash + ob_node_hash)))
        n_nodes = len(node_set)
        node_to_id = {}
        for i, node in enumerate(node_set):
            node_to_id[node] = i
        sub_id = []
        ob_id = []
        for i in range(n_edges):
            sub_id.append(node_to_id[sub_node_hash[i]])
            ob_id.append(node_to_id[ob_node_hash[i]])

        # node features
        bbox = mx.nd.zeros((n_nodes, 4))
        node_class_ids = mx.nd.zeros((n_nodes, 1))
        node_visited = [False for i in range(n_nodes)]
        for i, it in enumerate(item):
            if not node_visited[sub_id[i]]:
                ind = sub_id[i]
                sub = it['subject']
                node_class_ids[ind] = sub['category']
                # y1y2x1x2 to x1y1x2y2
                bbox[ind,0] = sub['bbox'][2]
                bbox[ind,1] = sub['bbox'][0]
                bbox[ind,2] = sub['bbox'][3]
                bbox[ind,3] = sub['bbox'][1]

                node_visited[ind] = True

            if not node_visited[ob_id[i]]:
                ind = ob_id[i]
                ob = it['object']
                node_class_ids[ind] = ob['category']
                # y1y2x1x2 to x1y1x2y2
                bbox[ind,0] = ob['bbox'][2]
                bbox[ind,1] = ob['bbox'][0]
                bbox[ind,2] = ob['bbox'][3]
                bbox[ind,3] = ob['bbox'][1]

                node_visited[ind] = True

        eta = 0.1
        node_class_vec = node_class_ids[:,0].one_hot(self.num_obj_classes,
                                                     on_value = 1 - eta + eta / self.num_obj_classes,
                                                     off_value = eta / self.num_obj_classes)

        # augmentation
        if self.split == 'val':
            img, bbox, _ = self.img_transform(img, bbox)
        else:
            img, bbox = self.img_transform(img, bbox)

        # build the graph
123
        g = dgl.DGLGraph()
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
        g.add_nodes(n_nodes)
        adjmat = np.zeros((n_nodes, n_nodes))
        predicate = []
        for i, it in enumerate(item):
            adjmat[sub_id[i], ob_id[i]] = 1
            predicate.append(it['predicate'])
        predicate = mx.nd.array(predicate).expand_dims(1)
        g.add_edges(sub_id, ob_id, {'rel_class': mx.nd.array(predicate) + 1})
        empty_edge_list = []
        for i in range(n_nodes):
            for j in range(n_nodes):
                if i != j and adjmat[i, j] == 0:
                    empty_edge_list.append((i, j))
        if len(empty_edge_list) > 0:
            src, dst = tuple(zip(*empty_edge_list))
            g.add_edges(src, dst, {'rel_class': mx.nd.zeros((len(empty_edge_list), 1))})

        # assign features
        g.ndata['bbox'] = bbox
        g.ndata['node_class'] = node_class_ids
        g.ndata['node_class_vec'] = node_class_vec

        return g, img