"vscode:/vscode.git/clone" did not exist on "8465f035d120c39a4243fd7e1692394ff316b9b3"
test_csrmm.py 8.92 KB
Newer Older
1
2
import numpy as np
import scipy.sparse as ssp
3
import pytest
4
5
6
7
8
9
10
11
12
13
14
import dgl
from utils import parametrize_dtype
import backend as F

def _random_simple_graph(idtype, dtype, ctx, M, N, max_nnz, srctype, dsttype, etype):
    src = np.random.randint(0, M, (max_nnz,))
    dst = np.random.randint(0, N, (max_nnz,))
    val = np.random.randn(max_nnz)
    a = ssp.csr_matrix((val, (src, dst)), shape=(M, N))
    a.sum_duplicates()
    a = a.tocoo()
15
16
17
18
19
20
21
    # shuffle edges
    perm = np.random.permutation(a.nnz)
    row = a.row[perm]
    col = a.col[perm]
    val = a.data[perm]
    a = ssp.csr_matrix((val, (row, col)), shape=(M, N))

22
    A = dgl.heterograph(
23
24
25
26
27
        {(srctype, etype, dsttype): (
            F.copy_to(F.tensor(row, dtype=idtype), ctx),
            F.copy_to(F.tensor(col, dtype=idtype), ctx))},
        num_nodes_dict={srctype: a.shape[0], dsttype: a.shape[1]})
    A.edata['w'] = F.copy_to(F.tensor(val, dtype=dtype), ctx)
28
29
30
    return a, A

@parametrize_dtype
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
@pytest.mark.parametrize('dtype', [F.float32, F.float64])
def test_csrmm(idtype, dtype):
    a, A = _random_simple_graph(idtype, dtype, F.ctx(), 500, 600, 9000, 'A', 'B', 'AB')
    b, B = _random_simple_graph(idtype, dtype, F.ctx(), 600, 700, 9000, 'B', 'C', 'BC')
    C, C_weights = dgl.sparse._csrmm(A._graph, A.edata['w'], B._graph, B.edata['w'], 2)
    C_adj = C.adjacency_matrix_scipy(0, True, 'csr')
    C_adj.data = F.asnumpy(C_weights)
    C_adj = F.tensor(C_adj.todense(), dtype=dtype)
    c = F.tensor((a * b).todense(), dtype=dtype)
    assert F.allclose(C_adj, c)

@parametrize_dtype
@pytest.mark.parametrize('dtype', [F.float32, F.float64])
@pytest.mark.parametrize('num_vtypes', [1, 2])
def test_csrmm_backward(idtype, dtype, num_vtypes):
    a, A = _random_simple_graph(idtype, dtype, F.ctx(), 3, 4, 6, 'A', 'B', 'AB')
    b, B = _random_simple_graph(idtype, dtype, F.ctx(), 4, 3, 6, 'B', 'A' if num_vtypes == 1 else 'C', 'BA')
    A_row, A_col = A.edges(order='eid')
    B_row, B_col = B.edges(order='eid')
    A_row = F.asnumpy(A_row)
    A_col = F.asnumpy(A_col)
    B_row = F.asnumpy(B_row)
    B_col = F.asnumpy(B_col)
    a_dense = F.attach_grad(F.tensor(a.todense(), dtype=dtype))
    b_dense = F.attach_grad(F.tensor(b.todense(), dtype=dtype))

    A.edata['w'] = F.attach_grad(A.edata['w'])
    B.edata['w'] = F.attach_grad(B.edata['w'])

    with F.record_grad():
        C = dgl.adj_product_graph(A, B, 'w')
        assert len(C.ntypes) == num_vtypes
        assert len(C.etypes) == 1
        C_dense = np.zeros((3, 3))
        C_row, C_col = C.edges(order='eid')
        C_row = F.asnumpy(C_row)
        C_col = F.asnumpy(C_col)
        C_dense[C_row, C_col] = F.asnumpy(C.edata['w'])
        c_dense = F.matmul(a_dense, b_dense)
        assert np.allclose(C_dense, F.asnumpy(c_dense), rtol=1e-4, atol=1e-4)

        F.backward(F.reduce_sum(C.edata['w']) + F.reduce_sum(c_dense))
        a_dense_grad = F.asnumpy(F.grad(a_dense))[A_row, A_col]
        b_dense_grad = F.asnumpy(F.grad(b_dense))[B_row, B_col]
        A_spspmm_grad = F.asnumpy(F.grad(A.edata['w']))
        B_spspmm_grad = F.asnumpy(F.grad(B.edata['w']))
        assert np.allclose(a_dense_grad, A_spspmm_grad, rtol=1e-4, atol=1e-4)
        assert np.allclose(b_dense_grad, B_spspmm_grad, rtol=1e-4, atol=1e-4)

@parametrize_dtype
@pytest.mark.parametrize('dtype', [F.float32, F.float64])
def test_csrsum(idtype, dtype):
    a, A = _random_simple_graph(idtype, dtype, F.ctx(), 500, 600, 9000, 'A', 'B', 'AB')
    b, B = _random_simple_graph(idtype, dtype, F.ctx(), 500, 600, 9000, 'A', 'B', 'AB')
    C, C_weights = dgl.sparse._csrsum([A._graph, B._graph], [A.edata['w'], B.edata['w']])
    C_adj = C.adjacency_matrix_scipy(0, True, 'csr')
    C_adj.data = F.asnumpy(C_weights)
    C_adj = F.tensor(C_adj.todense(), dtype=dtype)
    c = F.tensor((a + b).todense(), dtype=dtype)
    assert F.allclose(C_adj, c)

@parametrize_dtype
@pytest.mark.parametrize('dtype', [F.float32, F.float64])
@pytest.mark.parametrize('nelems', [1, 2])
def test_csrsum_backward(idtype, dtype, nelems):
    a, A = _random_simple_graph(idtype, dtype, F.ctx(), 3, 4, 6, 'A', 'B', 'AB')
    b, B = _random_simple_graph(idtype, dtype, F.ctx(), 3, 4, 6, 'A', 'B', 'AB')
    A_row, A_col = A.edges(order='eid')
    B_row, B_col = B.edges(order='eid')
    A_row = F.asnumpy(A_row)
    A_col = F.asnumpy(A_col)
    B_row = F.asnumpy(B_row)
    B_col = F.asnumpy(B_col)
    a_dense = F.attach_grad(F.tensor(a.todense(), dtype=dtype))
    b_dense = F.attach_grad(F.tensor(b.todense(), dtype=dtype))

    A.edata['w'] = F.attach_grad(A.edata['w'])
    B.edata['w'] = F.attach_grad(B.edata['w'])

    with F.record_grad():
        if nelems == 2:
            # Test for two element case
            C = dgl.adj_sum_graph([A, B], 'w')
            assert C.canonical_etypes == A.canonical_etypes
            C_dense = np.zeros((3, 4))
            C_row, C_col = C.edges(order='eid')
            C_row = F.asnumpy(C_row)
            C_col = F.asnumpy(C_col)
            C_dense[C_row, C_col] = F.asnumpy(C.edata['w'])
            c_dense = a_dense + b_dense
            assert np.allclose(C_dense, F.asnumpy(c_dense), rtol=1e-4, atol=1e-4)

            F.backward(F.reduce_sum(C.edata['w']) + F.reduce_sum(c_dense))
            a_dense_grad = F.asnumpy(F.grad(a_dense))[A_row, A_col]
            b_dense_grad = F.asnumpy(F.grad(b_dense))[B_row, B_col]
            A_spspmm_grad = F.asnumpy(F.grad(A.edata['w']))
            B_spspmm_grad = F.asnumpy(F.grad(B.edata['w']))
            assert np.allclose(a_dense_grad, A_spspmm_grad, rtol=1e-4, atol=1e-4)
            assert np.allclose(b_dense_grad, B_spspmm_grad, rtol=1e-4, atol=1e-4)
        elif nelems == 1:
            # Test for single element case
            C = dgl.adj_sum_graph([A], 'w')
            assert C.canonical_etypes == A.canonical_etypes
            C_dense = np.zeros((3, 4))
            C_row, C_col = C.edges(order='eid')
            C_row = F.asnumpy(C_row)
            C_col = F.asnumpy(C_col)
            C_dense[C_row, C_col] = F.asnumpy(C.edata['w'])
            c_dense = a_dense
            assert np.allclose(C_dense, F.asnumpy(c_dense), rtol=1e-4, atol=1e-4)

            F.backward(F.reduce_sum(C.edata['w']) + F.reduce_sum(c_dense))
            a_dense_grad = F.asnumpy(F.grad(a_dense))[A_row, A_col]
            A_spspmm_grad = F.asnumpy(F.grad(A.edata['w']))
            assert np.allclose(a_dense_grad, A_spspmm_grad, rtol=1e-4, atol=1e-4)
146
147

@parametrize_dtype
148
149
150
151
152
153
154
155
156
157
158
159
@pytest.mark.parametrize('dtype', [F.float32, F.float64])
@pytest.mark.parametrize('A_nnz', [9000, 0])
@pytest.mark.parametrize('B_nnz', [9000, 0])
def test_csrmask(idtype, dtype, A_nnz, B_nnz):
    a, A = _random_simple_graph(idtype, dtype, F.ctx(), 500, 600, A_nnz, 'A', 'B', 'AB')
    b, B = _random_simple_graph(idtype, dtype, F.ctx(), 500, 600, B_nnz, 'A', 'B', 'AB')
    C = dgl.sparse._csrmask(A._graph, A.edata['w'], B._graph)
    B_row, B_col = B.edges(order='eid')
    B_row = F.asnumpy(B_row)
    B_col = F.asnumpy(B_col)
    c = F.tensor(a.todense()[B_row, B_col], dtype)
    assert F.allclose(C, c)
160
161

@parametrize_dtype
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
@pytest.mark.parametrize('dtype', [F.float32, F.float64])
def test_csrmask_backward(idtype, dtype):
    a, A = _random_simple_graph(idtype, dtype, F.ctx(), 3, 4, 6, 'A', 'B', 'AB')
    b, B = _random_simple_graph(idtype, dtype, F.ctx(), 3, 4, 6, 'A', 'B', 'AB')
    A_row, A_col = A.edges(order='eid')
    B_row, B_col = B.edges(order='eid')
    A_row = F.asnumpy(A_row)
    A_col = F.asnumpy(A_col)
    B_row = F.asnumpy(B_row)
    B_col = F.asnumpy(B_col)
    a_dense = F.attach_grad(F.tensor(a.todense(), dtype=dtype))

    A.edata['w'] = F.attach_grad(A.edata['w'])

    with F.record_grad():
        # Test for two element case
        C1 = F.csrmask(A._graph, A.edata['w'], B._graph)
        if dgl.backend.backend_name == 'tensorflow':
            import tensorflow as tf
            C2 = tf.gather_nd(a_dense, tf.stack([B_row, B_col], 1))
        else:
            C2 = a_dense[B_row, B_col]
        assert F.allclose(C1, C2, rtol=1e-4, atol=1e-4)

        F.backward(F.reduce_sum(C1) + F.reduce_sum(C2))
        a_dense_grad = F.asnumpy(F.grad(a_dense))[A_row, A_col]
        A_spspmm_grad = F.asnumpy(F.grad(A.edata['w']))
        assert np.allclose(a_dense_grad, A_spspmm_grad, rtol=1e-4, atol=1e-4)

191
192

if __name__ == '__main__':
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    test_csrmm(F.int32, F.float32)
    test_csrmm(F.int64, F.float32)
    test_csrsum(F.int32, F.float32)
    test_csrsum(F.int64, F.float32)
    test_csrmask(F.int32, F.float32, 9000, 9000)
    test_csrmask(F.int64, F.float32, 9000, 0)
    test_csrmask(F.int32, F.float32, 0, 9000)
    test_csrmask(F.int64, F.float32, 0, 0)
    test_csrmm_backward(F.int32, F.float32, 1)
    test_csrmm_backward(F.int64, F.float32, 1)
    test_csrmm_backward(F.int32, F.float32, 2)
    test_csrmm_backward(F.int64, F.float32, 2)
    test_csrsum_backward(F.int32, F.float32, 1)
    test_csrsum_backward(F.int64, F.float32, 1)
    test_csrsum_backward(F.int32, F.float32, 2)
    test_csrsum_backward(F.int64, F.float32, 2)
    test_csrmask_backward(F.int32, F.float32)
    test_csrmask_backward(F.int64, F.float32)